

Mixed Use Development

Hydrogeological Investigation 11 to 25 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, Ontario

Client: 11 Yorkville Partners Inc.

Type of Document: Update

Project Name:

Hydrogeological Investigation 11 to 25 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, Ontario

Project Number: MRK-00242474-A0

EXP Services Inc. 200 Commerce Valley Drive West, Unit 110 Markham, ON, L3T 0A8 t: 905.695.3217 f: 905.695.0169

Date Submitted:

March 13, 2018 Updated July 15, 2019

Table of Contents

1.	Introd	luction	3
	1.1	Project Description	3
	1.2	Project Objectives	3
	1.3	Scope of Work	3
	1.4	Review of Previous Reports	4
2	Hydro	geological Setting	5
	2.1	Regional Setting	5
	2.1.1	Regional Physiography	5
	2.1.2	Regional Geology and Hydrogeology	5
	2.1.3	Existing Water Well Survey	6
	2.2	Site Setting	6
	2.2.1	Site Topography	6
	2.2.2	Local Surface Water Features	6
	2.2.3	Local Geology and Hydrogeology	7
3	Resul	ts	9
	3.1	Monitoring Well Details	9
	3.2	Water Level Monitoring	9
	3.3	Hydraulic Conductivity Testing	12
	3.4	Groundwater Quality	13
4	Const	ruction Dewatering Assessment	16
	4.1	Construction Dewatering Rate Assumptions	16
	4.1.1	Dewatering Flow Rate Estimate and Zone of Influence	17
	4.1.2	Radius of Influence	17
	4.2	Rainfall	17
	4.3	Results of Construction Dewatering Rate Estimate	18
	4.4	Construction MECP Water Taking Permit	18
5	Sub-D	rain Discharge Estimate	19
	5.1	Long-Term Dewatering Rate Assessment	19

EXP Services Inc. 2

Project Number: MRK-00242474-A0 Date: Updated July 25, 2019

	5.3	Post-Development MECP Water Taking Permit	19						
6	Enviro	onmental Impact	20						
	6.1	Surface Water Features	20						
	6.2	Groundwater Sources	20						
	6.3	Geotechnical Considerations	20						
	6.4	Groundwater Quality	20						
	6.5	Well Decommissioning	21						
7	Concl	usions and Recommendations	22						
8	Limita	tions	23						
9	References								

List of Appendices

Figures

- Appendix A MECP WWR Summary Table
- Appendix B Borehole Logs
- Appendix C SWRT Procedures and Results
- Appendix D Laboratory Certificates of Analysis
- Appendix E Construction Flow Rate Calculations

1. Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by 11 Yorkville Partners Inc. to prepare a Hydrogeological Investigation Report associated with the proposed development located at 11 to 25 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, Ontario (hereinafter referred to as the 'Site'). This report was originally submitted on May 7, 2019 and recently updated to include revision to the building foundation design to accommodate an unencumbered on-site public parkland dedication to the City of Toronto as part of the development.

The Site is currently occupied by four multilevel buildings (ranging from 2 to 9 stories) with one level basement or underground parking (P1) at 11 to 21 Yorkville Avenue and two (2) 2-storey commercial buildings at 16 to 18 Cumberland Street. It is our understanding that the proposed development plan is to demolish the existing buildings along Yorkville Avenue and construct a sixty-two (62) storey high-rise building structure with one (1) above grade mezzanine level and four (4) levels of underground parking (P4). The proposed development also includes two (2) commercial buildings along Cumberland that will be developed in the future. The Site location plan is shown on Figure 1.

EXP conducted a Preliminary Geotechnical Investigation and Environmental Site Assessment in conjunction with this investigation onsite and reported under separate covers. The pertinent information gathered from the noted Investigations is utilized for this report

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation are as follows:

- Establish the local hydrogeological settings within the Site;
- Provide Preliminary recommendations on construction and long-term dewatering;
- Assess groundwater quality; and
- Prepare a Hydrogeological Investigation Report.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Review available geological and hydrogeological information for the Site;
- Drill and install four (4) monitoring wells to an approximate depth of 22 meter below ground surface (mbgs);
- Develop four (4) existing monitoring wells and two (2) existing monitoring wells on the Site;
- Conduct Single Well Response Tests (SWRT) on all available monitoring wells to assess hydraulic conductivities of the saturated soils at the Site;
- Complete three (3) months of groundwater monitoring for the highrise building as per City's requirements. Complete a minimum of six rounds (6) rounds of groundwater level measurements at all monitoring wells over a three-month period;
- Collect one (1) groundwater sample from a selected monitoring well at the foundation level of the proposed highrise building for the City of Toronto Chapter 681, Sewer, By-Law Sanitary and Storm Sewer parameters;
- Evaluate the information collected during the field investigation program, including borehole geological information, Water Well Records (WWR), SWRT results, groundwater level measurements and groundwater water quality;
- Prepare site plans, cross sections, geological mapping and groundwater contour mapping for the Site;

- Provide preliminary recommendations on the requirements for construction and long-term dewatering;
- Provide recommendations on the Ministry of Environment, Conservation and Parks (MECP) Water Taking Permits and City of Toronto Sewer Discharge Agreements (SDA) for the construction and post construction phases; and,
- Prepare a Hydrogeological Investigation Report.

The hydrogeological investigation was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, and Toronto Municipal Code 681-Sewers. The scope of work outlined above is prepared to assess dewatering and does not include a review of Environmental Site Assessments (ESA).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Hydrogeological Investigation:

- EXP Services Inc. (March 13, 2018) Preliminary Hydrogeological Investigation, 11 Yorkville Avenue, 11 to 21 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, ON, prepared for 11 Yorkville Partners Inc.
- EXP Services Inc. (March 8, 2018) Preliminary Geotechnical Assessment, 11 Yorkville Avenue, 11 to 21 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, ON, prepared for 11 Yorkville Partners Inc.
- EXP Services Inc. (February 28, 2019) Phase Two Environmental Site Assessment (ESA) Update, 11 Yorkville Avenue, Toronto, ON, prepared for 11 Yorkville Partners Inc.

The Preliminary Hydrogeological Investigation was completed based on the existing borehole information available at the time of the report preparation for the preliminary design of the proposed development.

The Preliminary Geotechnical Assessment was completed based on the existing borehole information available at the time of the report preparation.

Thirteen (13) boreholes, including the four (4) 50 mm diameter monitoring wells installed for the Hydrogeological investigation, were completed between November and December 2018 as part of EXP's Phase Two ESA drilling program.

Information obtained from the Preliminary Hydrogeological Investigation, Preliminary Geotechnical Assessment and the Phase Two ESA Update were used to develop the subsurface profile provided in the cross-section diagrams in the Hydrogeological Investigation.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is located within a physiographic region known as the Iroquois Plain and the Physiographic landform known as Sand Plain (Chapman & Putnam, 2007).

The Iroquois Plain was created along the shores of former Lake Iroquois, an ancient glacial lake. The noted Plain primarily consists of shallow water sandy deposits.

The topography of the Iroquois Plain is relatively flat with a gradual slope to the south, toward Lake Ontario.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as coarse textured (foreshore-basinal) glaciolacustrine deposits consisting of sand, gravel, minor silt and clay (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2.

Based on the available regional geology maps, the thickness of overburden within the Site boundary and its proximity approximately ranges from 20 to 80 meters (Oak Ridge Moraine Groundwater Program, 2018) and the subsurface stratigraphy of the Site from the highest to the lowest elevations can be described in the following sequence (TRCA, 2008 and Oak Ridge Moraine Groundwater Program, 2018):

- Halton Till: This lithologic unit typically consists of sandy silt to clayey silt till interbedded with silt, clay, sand and gravel (TRCA, 2008). Top elevation of this unit within the proposed development area approximately ranges from 122 to 123 masl.
- Oak Ridges Moraine: This geology unit mainly consists of interbedded fine-grained sand and silt deposits where coarsegrained sand and gravel along with clay laminae are locally reported. A distinctive lithologic unit, consisting of finegrained sediments and silts within the main Oak Ridges Moraine has been identified in some of the areas of the Humber River Watershed (TRCA, 2008). Top elevation of this unit within the proposed development area is approximately at 122 masl.
- Newmarket Till: This lithologic unit mainly consist of a massive and dense silty sand unit (TRCA, 2008). This geologic unit is not mapped within the Site area.
- Thorncliffe: This geology formation generally consists of glaciofluvial (sand, silty sand) or glaciolacustrine deposits (silt, sand, pebbly silt and clay) (TRCA, 2008). Top elevation of this geology unit is approximately at 121 masl.
- Sunnybrook: This lithologic unit predominately consists of silt and clay (TRCA, 2008). Top elevation of this geology unit is mapped within the proposed development area is approximate at 118 masl.
- Scarborough: This geology unit consists of peat sand overlaying silt and clay deposits (TRCA, 2008). Top elevation of this unit is within the proposed development area is approximately at 112 masl. (Oak Ridge Moraine Groundwater Program, 2018).
- Bedrock: Bedrock of the region corresponds to the Upper Ordovician age Georgian Bay Formation, primarily consisting of interbedded shale, limestone, dolostone, and siltstone (Ministry of Northern Development and Mines, 2012). Top of this unit within the proposed development is approximately at 110 masl.

Regional groundwater flow across the area is expected to be directed southeast, towards Lake Ontario (Oak Ridge Moraine Groundwater Program, 2018), located approximately 3.6 km south of the Site. Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Well Records from the Ministry of the Environment, Conservation and Parks (MECP) Water Well Record (WWR) Database were reviewed to determine the number of water wells present within a 500-m radius of the Site boundaries.

The MECP WWR database indicates that two hundred and eighty-two (282) well records were located within a 500 m radius from the Site centroid. Eight (8) of the well records were identified onsite (Figure 3 and Appendix A). The onsite wells were listed as monitoring or test holes.

The database indicates that the offsite wells final statuses were observation wells, test holes, dewatering, monitoring wells or abandoned-other. Eighteen (18) of the offsite well records were reportedly located at distance less than 100m from the centroid of the Site.

One (1) offsite well (well ID 7119992) was identified in the WWR database as a domestic well as its first use and as a set of dewatering wells in its final well use status in March 2009. The well was decommissioned in May 2009 (well ID 7122932). Well ID 7119992 was reportedly located 235 m from the Site centroid.

Based on the decommissioning date of water supply/dewatering wells and since the area is municipally serviced, it is unlikely that the noted water well is still active.

Sixty-three (63) offsite well records reportedly have water levels ranged from depths of 0.8 m to 100.0 meters below ground surface (mbgs). The onsite well records reportedly did not contain any data on the water levels encountered.

The locations of the MECP WWR within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

2.2 Site Setting

2.2.1 Site Topography

The Site is located in an urbanized land use setting.

The topography is considered relatively flat, with an overall gradual downwards slope to the south towards Lake Ontario (Ontario Ministry of Natural Resources Base Map Sheet 10 17 6250 48350 and Sheet 10 17 6300 48350).

As indicated on the borehole logs included in Appendix B and Topographic Plan, Drawing Number 17M-01494-000, prepared by WSP Geomatics Ontario Limited, dated August 21, 2017, the surface elevation of the Site ranges between approximately 116.0 and 116.3 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is located within the Don River watershed.

No surface water features are located onsite. The nearest surface water features are the Don River and its tributary, located approximately 1 to 2 km north east to east of the Site. Lake Ontario is approximately 3.6 km south of the Site.

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, 2018) and the Phase Two ESA and they are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for the construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). It should be noted that the soil boundaries indicated on the borehole logs are inferred from non continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the purpose of hydrogeological investigation and shall not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the preliminary geotechnical assessment and Phase Two ESA, the general subsurface soil stratigraphy consist of the following units from top to maximum depth of investigation onsite as follows:

Pavement Structure

Pavement structure, comprising 50 mm asphaltic concrete, was encountered in Boreholes TH1 to TH4 and BH1.

Fill

Fill was encountered in all boreholes, extending to depths of 2.3 m below the existing grade (BH15-3). The fill material generally comprised silty sand to sand with variable amounts of gravel. Brick, coal, asphalt and concrete fragments were noted within the fill. The fill was generally moist to very moist.

Sand/Silty Sand

A shallow Sand/Silty Sand deposit was encountered below the fill in the boreholes and extended to depths of about 3.5 to 4.6 m below the existing grade. The Sand/Silty Sand existed in a loose to compact state of compactness. The Sand/Silty Sand deposit was found to be moist becoming wet at about 3 m below then existing grade with black laminations and staining evident.

Lower levels of Sand/Silty Sand layers were encountered at depths of about 12.2 to 25.9 m below the existing grade in Borehole BH-1. Based on the Standard Penetration Test (SPT) values, the lower Sand/Silty Sand existed in a dense to very dense state of compactness. The lower portion of the Sand/Silty Sand unit exist in a moist to wet condition.

Silty Clay / Silty Clay Till

Silty Clay or Silty Clay Till was encountered below the Fill and shallow Sand/Silty Sand deposit. The Silty Clay/Silty Clay till deposits were grey in colour, contained trace Sand and Gravel, and were stiff to very stiff in consistency. The Silty Clay/Silty Clay Till were in a moist condition. The Silty Clay/Silty Clay Till deposits extended to depths of about 4.55 to 12.2 m below then existing grade.

Silt, Sandy silt, and Sandy Silt to Silty Sand

Alternating deposits of Silt, Sandy Silt, and Sandy Silt to Silty Sand was encountered below the Silty Clay or Sand/Silty Sand in the boreholes. The deposits contained variable amounts of Clay. Frequent Clayey Silt seams/layers were noted in the Sandy Silt to Silty Sand deposit. The compactness of the deposits ranged from compact to very dense but was typically dense to very dense. The deposits were generally in a wet condition.

A lower Sandy Silt layer was encountered at a depth of 21.7 m below then existing grade in Borehole BH15-3 and extended to the termination depth of borehole at 21.9 m below the existing grade. The lower Sandy Silt layer contained trace Clay and existed in a dense state of compactness. The lower Sandy Silt layer existed in a wet condition.

Clayey Silt Till

Clayey Silt Till was encountered at depths ranging from approximately 19.3 to 33.5 m below existing grade in Borehole BH-1. The Clayey Silt Till contained variable amounts of Sand, trace Gravel, and was hard in consistency. Shale fragments were noted in the clayey silt till with depth. The Clayey Silt Till was in a moist condition.

Shale Bedrock

Weathered Shale bedrock was encountered below the Clayey Silt Till deposit in Borehole BH-1. The contact surface of the bedrock was at approximately 38.1 m below existing grade, corresponding to approximately Elevation 78.5 m. No coring was carried out to confirm and to determine the quality of the bedrock for this preliminary investigation. As such, the contact elevations should not be interpreted as exact planes of bedrock since the auger will frequently penetrate some distance into the weathered Shale bedrock before noticeable resistance is encountered.

Based on EXP's past experience in the area, the bedrock encountered in the borehole belongs to the Georgian Bay Formation (Ordovician period) and underlies this Site at a significant depth. The upper zone of the bedrock is generally highly weathered to weathered. The distinction between highly weathered shale and the overlying strata, particularly if the latter contains abundant shale fragments, is not always clear and consequently, some of the soils resting on the surface of the bedrock might be very weak or highly weathered rock.

The borehole and monitoring well locations are shown on Figure 4. Geological cross-sections were generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5A (Cross section A-A') and on Figure 5B (Cross section B-B'). Borehole logs used to generate both cross-sections are provided in Appendix B.

3 Results

3.1 Monitoring Well Details

The monitoring well network installed as part of the Geotechnical and Environmental Investigations and previous investigations at the Site utilized for this Hydrogeological Investigation consists of the following:

- Four (4) overburden monitoring wells (TH101D, TH105D, TH106D, and TH109D) were installed by EXP in November/December 2018 to at least 2m below the proposed depth of the highrise structure foundation;
- One nested location including one (1) deep overburden monitoring well (BH15-3) and a one (1) shallow monitoring well (BH15-S) was installed on January 24, 2015 by others (SPL Consultants Limited);
- One (1) deep monitoring well (BH1) was installed to bedrock February 24, 2016 by others (McClymont & Rak Engineers Inc);
- Sixteen (16) shallow monitoring wells were installed by EXP for the Phase Two Environmental Site Assessment;
- Diameter of all the monitoring wells is 50 mm;
- All wells installed with a flush mount well protective casing.

Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of this Hydrogeological Investigation, static water levels in the monitoring wells installed to the foundation depth of the highrise building were recorded in bi-weekly (every two weeks) monitoring events over a three (3) month period, between December 2018 and April 2019. Water levels were also recorded in all available shallow monitoring wells, previously installed on site. A summary of static water level data measured by EXP as it relates to the elevation survey for deep and shallow water bearing zones is summarized in Tables 3-1 and 3-2 below, respectively.

According, the groundwater elevation recorded at the approximate foundation levels of the highrise building (BH15-3, TH101D, TH105D, TH106D, and TH109D) ranged from 99.00 masl (17.3 mbgs at BH15-3 on April 12, 2019) to 96.24 masl (17.61 mbgs at TH101D on January 14, 2019). Furthermore, the groundwater elevation recorded for the deep well (BH-1) ranged from 96.28 masl (20.36 mbgs on March 4, 2019) to 96.16 masl (20.48 mbgs on January 14, 2019). Figure 6A presents the deep groundwater contour map as measured on January 14, 2019. Accordingly, the groundwater flow directions in the deep zone is interpreted to be northwest to the Site.

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)*	Depth	11-Dec- 18	14-Jan- 19	8-Feb- 19	22-Feb- 19	4-Mar- 19	28-Mar- 19	12-Apr- 19
BH1	116.64	27.4/36.9**	mbgs	na	20.48	20.38	20.37	20.36	20.40	20.38
			masl	na	96.16	96.26	96.27	96.28	96.24	96.26
BH15-3	116.30	21.8	mbgs	na	17.59	17.32	na	na	17.33	17.3

Table 3-1: Summary of Measured Deep Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)*	Depth	11-Dec- 18	14-Jan- 19	8-Feb- 19	22-Feb- 19	4-Mar- 19	28-Mar- 19	12-Apr- 19
			masl	na	98.61	98.98	na	na	98.97	99.00
TH101D	113.85	19.8	mbgs	17.41	17.61	17.61	na	na	17.33	17.3
			masl	96.44	96.24	96.24	na	na	96.52	96.55
TH105D	116.67	23.2	mbgs	19.87	20.01	19.98	19.96	na	19.22	19.9
			masl	96.80	96.66	96.69	96.71	na	97.45	96.77
TH106D	113.08	19.2	mbgs	15.45	16.34	16.40	16.36	9.66	16.35	16.31
			masl	97.63	96.74	96.68	96.72	114.18	96.73	96.77
TH109D	113.72	19.8	mbgs	16.30	15.38	15.58	15.58	4.35	15.58	15.51
			masl	97.42	98.34	98.14	98.14	119.17	98.14	98.21

Notes:

mbgs: meters below ground surface

masl: meters above mean sea level

* Based on field measurements

Two (2) monitoring wells TH1 and TH105i were installed to depths of 15.8 and 10.1 mbgs, respectively. These two monitoring wells were installed below the shallow monitoring wells to vertically profile the shallow groundwater condition in the Phase Two Environmental Site Assessment. Both of these wells were found to be dry during subsequent site visits to monitor the water levels.

The shallow groundwater elevation recorded in the shallow monitoring wells BH15-3S, MW01, MW02, MW04, TH2, TH3 TH4, TH101S, TH102, TH103, TH104, TH106S, TH107, TH108 and TH109 between November 28, 2017 and January 14, 2019, ranged from a high of 113.94 masl (0.32 mbgs at MW04 on January 14, 2019) to a low of 112.12 masl (4.19 mbgs at MW01 on November 28, 2017). It should be noted that monitoring well TH106, was found to be dry.

Figure 6B presents the shallow groundwater contour map as measured on January 14, 2019. Accordingly, the groundwater flow directions in the shallow zone is interpreted to be southwest on the Site.

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)*		28-Nov-17	5-Feb-18	14-Jan-19
BH15-3S	116.30	5.5	mbgs	3.19		3.02
внтэ-ээ	110.50	5.5	masl	113.11		113.28
MW01	116.31	6.1	mbgs	4.19		3.18
WWW	110.51	0.1	masl	112.12		113.13
MW02	116.31	5.2	mbgs	3.34		3.12
101002	110.51	5.2	masl	112.97		113.19
MW04	114.26	3.05	mbgs	0.58		0.32
101004	114.20	5.05	masl	113.68		113.94
TH2	116.89	5.5	mbgs		3.44	3.38
1112	110.05		masl		113.46	113.51
тнз	116.23	5.8	mbgs		3.22	3.12
1115	110.20	5.0	masl		113.02	113.11
TH4	116.20	5.9	mbgs		3.25	na
1114	110.20	5.5	masl		112.96	na
TH101S	113.85	3.7	mbgs			0.41
111015	113.05	5.7	masl			113.44
TH102	113.88	3.7	mbgs			0.34
11102	113.00	5.7	masl			113.54
TH103	116.78	4.3	mbgs			3.11
11105	110.70	т.5	masl			113.67
TH104	116.76	4.3	mbgs			3.86
111104	110.70	т.Ј	masl			112.90
TH106S	113.08	3.7	mbgs			dry
1111005	113.00	5.7	masl			dry

Table 3-2: Summary of Measured Groundwater Elevations – Shallow Groundwater

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)*		28-Nov-17	5-Feb-18	14-Jan-19
TH107	113.00	4.6	mbgs			4.59
11107	113.00	4.0	masl			108.41
TH108	113.71	4.6	mbgs			1.08
111100	113.71	4.0	masl			112.63
TH109	113.72	4.6	mbgs			4.46
11109	113.72		masl			109.26

Notes:

Na - not available for measuring

Dry – no groundwater detected

mbgs: meters below ground surface

masl: meters above mean sea level

* Based on field measurements

It should be noted that groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions; this may also affect the direction and rate of flow. There is a potential that both shallow and deep ground water levels might show localized variations due to ongoing construction activities on adjacent properties (south east, south west and north west of the Site.

3.3 Hydraulic Conductivity Testing

Six (6) Single Well Response Tests (SWRT's) were completed on monitoring wells TH101D, TH105D, TH106D, and TH109D on January 14, 2019 and on monitoring wells BH1 and BH15-3 on February 5, 2018. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivity (K) values estimated from the SWRTs are provided in Table 3-3.

Monitoring	Well Depth	Screen Inte	erval (mbgs)	Soil Formation Screened	Estimated Hydraulic Conductivity
Well	(mbgs)*	from to		**	(m/s)
BH1	27.4/36.9	24.4	27.4	Sandy Silt/Silty Sand	9.8 x 10 ⁻⁷
BH15-3	21.3	18.3 21.3		Sandy Silt/Silty Sand/Clayey Silt Till	1.2 x 10 ⁻⁷
TH101D	19.8	16.8	19.8	Sandy Silt	n/a
TH105D	23.2	19.8	22.8	Sandy Silt/Silty Sand	3.9 x 10 ⁻⁶
TH106D	19.2	16.2	19.2	Silty Sand	5.9 x 10 ⁻⁶
TH109D	19.8	16.8	19.8	Clayey Silt Till/Sand	8.8 x 10 ⁻⁷
BH1	27.4/36.9	24.4	27.4	Sandy Silt/Silty Sand	9.8 x 10 ⁻⁷
BH15-3	H15-3 21.3 18.3 21.3		Sandy Silt/Silty Sand/Clayey Silt Till1.2 x 10-7		
Highest Estima	ited K Value				5.9 x 10 ⁻⁶
Geometric Me	an of Estimate	d K Values			3.1 x 10 ⁻⁷

Table 3-3: Summary of Hydraulic Conductivity Testing

Notes:

*Well depth is based on the field measurements

** Soil descriptions are based on the borehole logs.

SWRTs provide estimates of K for the geological formation in the immediate media zone surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown in Table 3-3, the highest K for the tested waterbearing zones is estimated to be 5.9 x 10-6 m/s, and the geometric mean of the K values is to be 3.1 x 10-7 m/s. The extension of the sand pack below the base of the deep well in Borehole BH1 did not significantly increase the hydraulic conductivity relative to the other results in the formation. Reliable data could not be obtained from the monitoring well TH101D during the SWRT test, the decline of the water table was too slow and considered not representative of the materials encountered.

3.4 Groundwater Quality

To assess the suitability for discharge of pumped groundwater to City of Toronto Sanitary and Strom Sewer during dewatering activities, a groundwater sample was collected from monitoring well BH15-3 on February 7, 2018 and from monitoring well TH109D on March 4, 2019 using a bladder pump. Prior to the collection of noted water samples, approximately three (3) standing well volumes of groundwater were purged from the noted wells.

Both samples were collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The

groundwater samples were submitted to a CALA certified independent laboratory, Maxxam Analytics Inc., in Mississauga, Ontario for analysis.

When compared to the City of Toronto Sanitary Sewer By-Law Limits (Table 1), the laboratory Certificate of Analysis (CofA) results showed that all parameters were detected at concentrations below the Sanitary By-Law limits (Table 1) except for TSS in the sample from BH15-3 (Table 1 of the By-law). The results from the sample TH109D, had much lower concentration of TSS and met the Sanitary and Combined Sewer By-Law limits.

When compared to the City of Toronto Storm Sewer By-Law Limits (Table 2), the CofA results for samples BH15-3 and TH109D were reported below the Storm Sewer Use By-Law criteria except for concentrations of Total Suspended Solids (TSS), Total Manganese (Mn) and Total Phosphorous (P).

Analytical results are provided in Appendix D. A summary of the pertinent results is provided in Table 3-4.

Parameter	City of Toronto Sanitary and Combined Sewer Discharge Limit (Table 1)	City of Toronto Storm Sewer Discharge Limit (Table 2)	Concentration BH15-3 February 7, 2018	Concentration TH109D March 4, 2019
Total Suspended Solids (mg/L)	350	15	12,000	37
Total Manganese (Mn) (μg/L) Total Phosphorous (P)	5,000	50	940	86
Total Phosphorous (P (µg/L)	10,000	400	1,700	490

Table 3-4: Summary of Analytical Results

Notes:

Bold indicates concentration exceeds the City of Toronto Storm Sewer Use By-Law Limit

Red and Underlined concentration exceeds City of Toronto Sanitary Sewer Use By-Law Limit

The results from Samples BH15-3 and TH109D, included in Table 3-4, suggest that the concentrations of total manganese and total phosphorus might be contributable, at least partially, to elevated concentrations of TSS detected in each sample.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed the both Sanitary and Storm By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

Based on the results from Sample TH109D, the long-term dewatering discharge to the Sanitary sewer system (postdevelopment phase) and based on the water quality test results for TH109D, the water is suitable to discharge without a treatment system.

For the long-term dewatering discharge to the Storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

It is noted that the water quality results presented in this report are not representative of the long-term groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

It is noted that an agreement to discharge to the City of Toronto will be required prior to discharging dewatering effluent.

Furthermore, the Environmental Site Assessment Report(s) should be reviewed for more information on the groundwater quality conditions at the Site. The analytical results from one (1) water sample from the shallow groundwater encountered in TH101S detected exceedances of tetrachloroethylene, trichloroethylene, cis-1,2–Dichloroethylene, trans-1,2-dichloroethylene and vinyl chloride. It should be noted that the parameters detected in the shallow groundwater sample and reported in the Phase Two Environmental Site Assessment (EXP, Feb 28, 2019) were not detected in the deep groundwater samples analyzed in this Hydrogeological Investigation. However, it should be noted that the groundwater quality for any dewatering discharge to the sewer system from the Site may require treatment for these organic compounds.

4 Construction Dewatering Assessment

4.1 Construction Dewatering Rate Assumptions

It is our understanding that the proposed development plan will be completed in phases. Phase One will include demolition of the existing buildings on the Site and construction of a six-two (62) storey high-rise structure with one (1) above grade mezzanine level and four (4) levels of underground parking. Phase Two of the proposed development will include construction of two (2) commercial buildings along Cumberland Street at some time in the future. The construction dewatering assessment presented herein is for the Phase One development only.

It should be noted that shoring drawings were not available at the time of this report. For this assessment, it was assumed that the proposed construction plans include an excavation with a caisson wall shoring system extending to the Site boundaries. EXP should be retained to review the assumptions outlined in this section, should the proposed shoring design change.

Table 4-1 presents the assumptions used to calculate the dewatering rate for the Site.

Input Parameter	Assumption	Notes
Ground floor elevation	116.35 masl	Elevation at Residential lobby, from Drawing Ground Floor Plan, A102 by Sweeny & Company Architects, revised date May 11, 2019.
P4 Underground Parking Finished Floor (FFE) Elevation (lowest)	101.50 masl	Elevation from Drawing A201 by Sweeny & Company Architects, date May 11, 2019 revised July 8, 2019.
P4 Perimeter footing Elevation (lowest)	100.30 masl	Elevation estimated from Drawing A101b by Sweeny & Company Architects, revised date May 11 2019 (1.2m below P4 FFE).
P4 Mat Slab elevation below elevator (lowest)	97.04 masl	Elevation from Drawing A201 by Sweeny & Company Architects, date May 11, 2019 revised Jul 8, 2019.
Dewatered elevation target	96.05 masl	Assumed to be approx. 1 m below the lowest footing elevation.
Site Excavation Area	49m by 48m 2352 m ²	Area estimated from Drawing A101 by Sweeny & Company Architects, revised date May 11, 2019 revised July 8, 2019.
Excavation Area for Mat Slab below highest groundwater level	42m by 23m 956 m ²	Area estimated from Drawing A101 by Sweeny & Company Architects, revised date May 11, 2019 revised July 8, 2019.
Highest Groundwater elevation	100 masl	The highest representative groundwater elevation measured across the Site (BH15-3 on April 12, 2019 plus 1 metre).
Hydraulic Conductivity (K)	5.9 x 10⁻ ⁶ m/s	Highest K value estimated for overburden (TH106D)

Table 4-1 Dewatering Estimate Assumptions

4.1.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit equation for steady linear flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = xK(H^2 - h^2)/Lo$$

Where:

Qw= Rate of pumping (m3/sec)X= Length of excavation (m)K= Hydraulic conductivity (m/sec)H= Head beyond the influence of pumping (static groundwater elevation) (m)h= Head above the base of aquifer in an excavation (m)Lo= Distance of Influence (m)

It is expected that the initial dewatering rate will be higher in order to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage resulting in lower seepage rates into the excavation.

4.1.2 Radius of Influence

The radius of influence (ROI) for the construction dewatering was calculated based on the Sichardt equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible. This empirical formula was developed to provide representative flow rates using the steady state flow dewatering equations, as discussed below.

The estimated radius of influence (Ro) of pumping based on the Sichardt formula is described as follows:

$$R_{o} = C(H - h)\sqrt{K}$$

Where:

- Ro = Estimated radius of influence (m)
- H = Head in aquifer (static water level or saturated depth) (m)
- h = Dynamic water level (m)
- K = Hydraulic Conductivity (m/sec)
- C = Constant (3,000)

Based on the Sichardt formula and the highest K value, the calculated zone of influence (Lo = Ro/2) would be approximately 29.1 m from the sides of the excavation during construction activity.

The calculations for radius of influence are provided in Appendix E (Table E-1).

4.2 Rainfall

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing direct input of rain water into the excavation.

A 15 mm precipitation event was utilized for the estimate. Given that the total area of the building excavation is approximately 2352 m² the estimated volume of direct precipitation to be collected in the excavation is approximately 35 m³ for a 15 mm precipitation event. The calculations for the rainfall input estimate is included in Appendix E (Table E-2).

It is noted that a two (2) year storm event over a 24-hour period is approximately 57 mm. During large precipitation events, the water should be retained on site to not exceed the allowable water taking and discharge limits as necessary.

4.3 Results of Construction Dewatering Rate Estimate

Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows :

Location	Peak Dewatering Flow Rate Including Safety Factor and Precipitation (m ³ /day)
Site Extents	333 (rounded)

Table 4-2 Summary of Dewatering Flow Rate Estimate

Construction dewatering flow rate estimate is provided in Appendix E (Table E-3).

This peak dewatering flow rates accounts for accumulation of some precipitation, seasonal fluctuations in the groundwater table, flow from beddings of existing sewers, and variation in hydrogeological properties beyond those encountered during the course of this study. This peak dewatering flow rate also provides additional capacity for the dewatering contractor.

It is noted that the maximum flow estimate equation calculated with a high K value, provides a conservative estimate to account for higher than expected flow rates during the construction dewatering.

Please note that it is the responsibility of the contractor to ensure dry conditions are maintained within the excavation at all times and at all costs.

4.4 Construction MECP Water Taking Permit

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering will be more than 50 m3/day but less than 400 m³/day, application for the Environmental Activity and Sector Registry (EASR) with MECP is required. If groundwater dewatering rates on-Site exceed 400 m³/day, a Category 3 Permit to Take Water (PTTW) would be required from the MECP.

It is recognized that the maximum flow estimate equation calculated with a high K value, provides a conservative estimate to account for higher than expected flow rates during the construction dewatering. Based on the dewatering estimate of approximately 333 m³/day for this project, an EASR would be required to facilitate the construction dewatering program for the Site.

5 Sub-Drain Discharge Estimate

5.1 Long-Term Dewatering Rate Assessment

The long-term dewatering assessment presented herein is for the Phase One development for the construction of the six-two (62) storey high-rise structure with one (1) above grade mezzanine level and four (4) levels of underground parking.

It is our understanding that the development plan for the highrise structure includes a permanent foundation sub-drain system that will ultimately discharge to the municipal sewer system.

Since the P4 sub-drain system will be installed above water table, no long-term groundwater dewatering is anticipated. However, for the provision of the sub-drain system, it is recommended to accommodate approximately 20 m³/day of long-term flow rates in the post-construction phase.

The Foundation Mat below the P4 slab will be constructed to a thickness of 2.5m but will be constructed to act as a hydraulic barrier so that groundwater does not enter the elevator pit.

The commercial buildings on the property at 16 and 18 Cumberland Street (Phase Two Development), will remain in place until such time as the owner proposes to redevelop these properties. The shallow groundwater level, encountered in monitoring well TH4, located at the rear of 16 Cumberland Street, is below the existing basement structure. It should be noted, that at that time additional hydrogeological investigation might be required to address the future proposed development.

5.3 Post-Development MECP Water Taking Permit

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering will be less than 50 m^3 /day, application for a Category 3 Permit to Take Water (PTTW) would not be required from the MECP.

6 Environmental Impact

6.1 Surface Water Features

The Site is located within the Don River watershed.

No surface water features are located onsite. The nearest surface water feature is the Don River and its tributary. The Don River is located approximately 2 km east of the Site and its western tributary flows eastward approximately 1 km north east of the Site. Lake Ontario is approximately 3.6 km south of the Site.

Due to the limited extent of zone of influence and the distance of the nearest surface water feature, no impacts to surface water features are expected during construction activities.

6.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the number of water supply wells present within a 500 m radius of the Site boundaries. Given that no groundwater supply wells were identified within 500m of the Site, no dewatering zone of influence related impact is expected on the water wells in the area.

It is anticipated that the area adjacent to the site is fully provided with municipal water supply and sewer services.

6.3 Geotechnical Considerations

Under certain conditions, dewatering activities can cause settlements due to an increase in the effective stress in the dewatered soil.

A letter related to geotechnical issues (i.e. settlement) as it pertains to the Site is recommended to be completed under a separate cover.

6.4 Groundwater Quality

It is our understanding that the potential discharge from the dewatering system during the construction will be directed to the municipal sewer system. As such, the quality of groundwater discharge is required to be in compliance with the City of Toronto Sewer Use By-Law.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed the both Sanitary and Storm By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

Long-term foundation drainage discharge is not anticipated based on the groundwater conditions encountered at the Site and the current building design. If the building design changes, it should be noted that the groundwater quality results indicate that discharge from the foundation drainage system can occur after treatment for TSS to the Sanitary sewer system (post-development phase). Water treatment would also be required for long-term foundation dewatering discharge to the Storm sewer system (post-development phase) based on the groundwater quality results.

It should be noted that the water quality results presented in this report are not representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

It is noted that an agreement to discharge to the City of Toronto sewer system will be required prior to discharging dewatering effluent.

Furthermore, the Phase Two Environmental Site Assessment Update Report shall be reviewed for more information on the groundwater quality conditions at the Site. A shallow groundwater condition was encountered in the shallow sand deposit overlying a layer of native silty clay encountered approximately 1.0 to 3.5 mbgs. The shallow groundwater results from the Phase Two ESA encountered one sample exceedance of Trichloroethylene (TCE), cis 1,2 Dichloroethylene, trans 1,2 dichloroethylene, and vinyl chloride from TH101S. The rest of the water samples from the monitoring wells met the Ontario Regulation 153/04 Table 3 all property use standards for fine grained soils. The Phase Two ESA Update did not identify any exceedances of the MECP Table 3 Standards in the groundwater at the foundation level. Furthermore, petroleum related compounds included in the Sewer Use chemical analysis package were all non-detect and confirmed the results of the Phase Two ESA. The use of a caisson wall around the property boundary will provide a hydraulic barrier and isolate the site from the shallow groundwater flow from the surrounding properties.

6.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

7 Conclusions and Recommendations

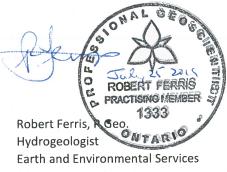
Based on the findings of the Hydrogeological Investigation, the following summary of conclusions and recommendations is provided:

- The laboratory CofA showed that all parameters were detected at concentrations below the Sanitary and Combined Sewer By-Law limits except for TSS detected above the standard limits from sample BH15-3 in 2018 (Table 1 of the Bylaw). All parameters were detected at concentrations below the Sanitary and Combined Sewer By-Law limits for the sample TH109D in 2019;
- The laboratory CofA results for both samples (BH15-3 in 2018 and TH109D in 2019) showed that all parameters were detected at concentrations below the Table 2 Storm Sewer Use By-Law except for Total Suspended Solids (TSS), Total Manganese (Mn) and Total Phosphorous (P);
- Based on the assumptions outlined in this report, the estimated peak dewatering pumping rate for proposed construction activities is approximately 333 m³/day. As the dewatering flow rate estimate is below the MECP EASR threshold of 400 m³/day, an EASR would be required to facilitate the construction dewatering program for the Site ;
- Although the current building design foundation levels are anticipated to be above the water table, the preliminary long-term flow rate of the foundation sub-drain system of approximately 20 m³/day is recommended. The exact volume discharged can be confirmed once the system is operational. It is recommended that once the sub-drain system is in place, a flow meter should be installed at the sump(s) to record daily discharge volumes to provide more representative rates during the commissioning stage of the system. Regular maintenance/cleaning of the sub-drain system is recommended to ensure its proper operation. A PTTW will not be required for long term discharge, based on the design volume provided ;
- The construction dewatering and long-term estimate of sub-drain discharge volumes is based on the assumptions
 outlined in this report, and that any variations in hydrogeological conditions beyond those encountered as part of this
 preliminary investigation may significantly influence the discharge volumes;
- For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed the both Sanitary and Storm By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer ;
- For the long-term dewatering discharge the City of Toronto sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.
- It is noted that an agreement to discharge to the City of Toronto will be required prior to discharging dewatering effluent.
- In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report where they are based on the assumptions that the present design concept described throughout the report will proceed to construction. Furthermore, this report is solely intended for the construction and long-term dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

8 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.


Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 11 Yorkville Partners Inc. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

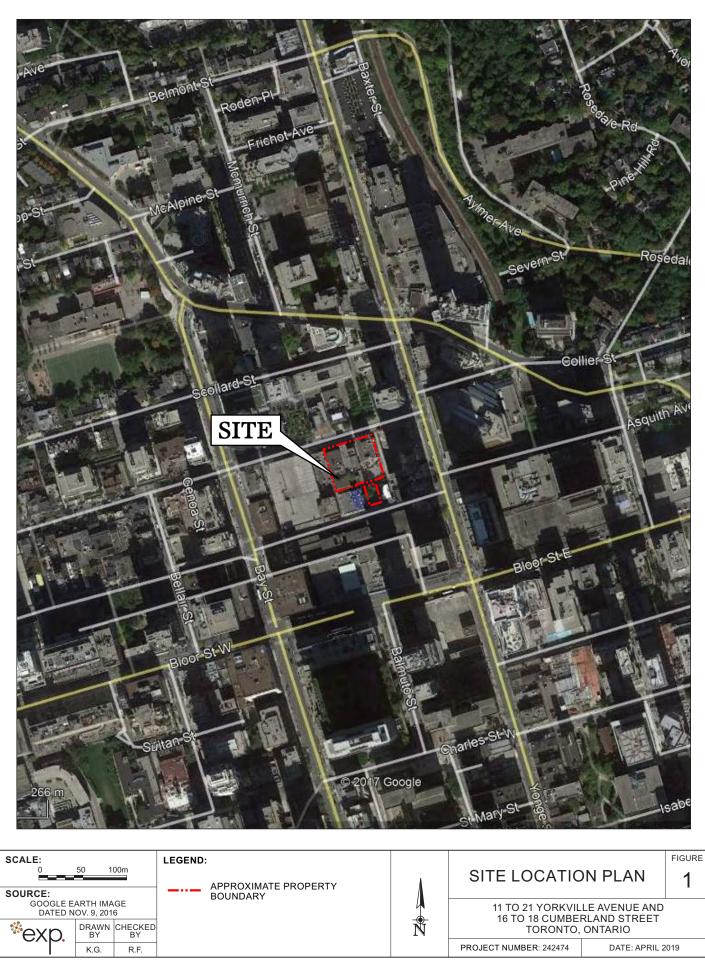
Sincerely,

EXP Services Inc.

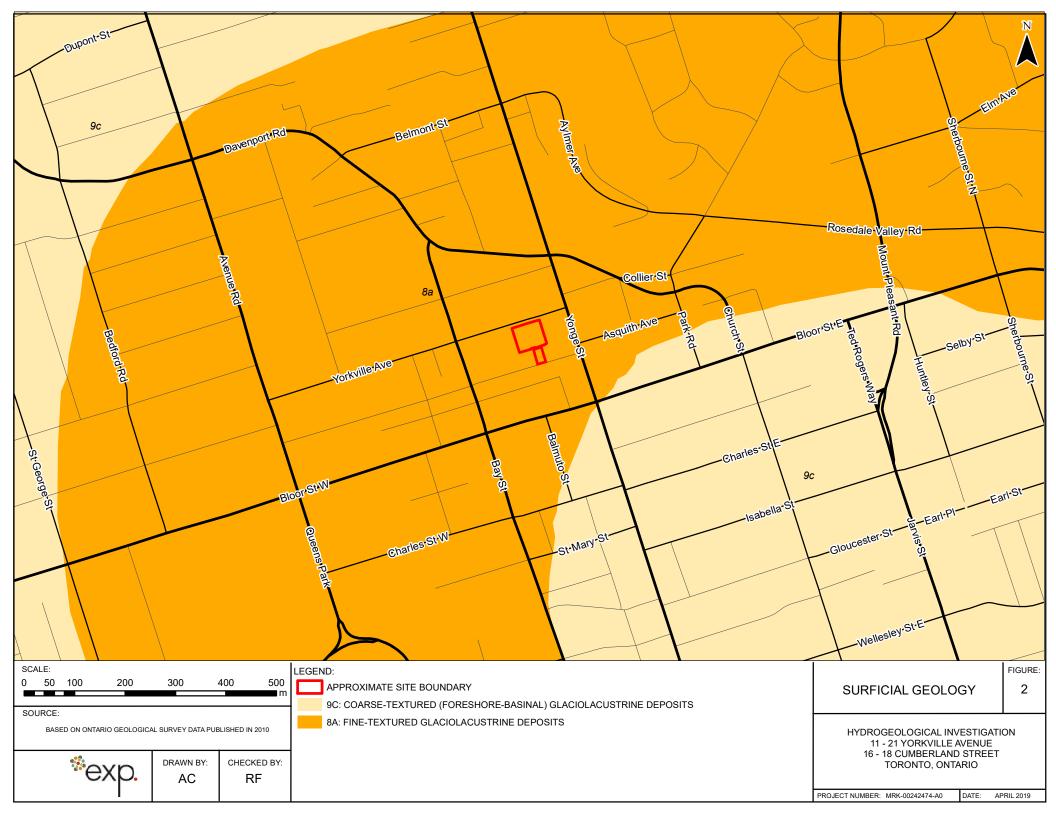
Nataliya Tkach, P.Geo., PMP, P.Eng. Senior Hydrogeologist Environmental Services

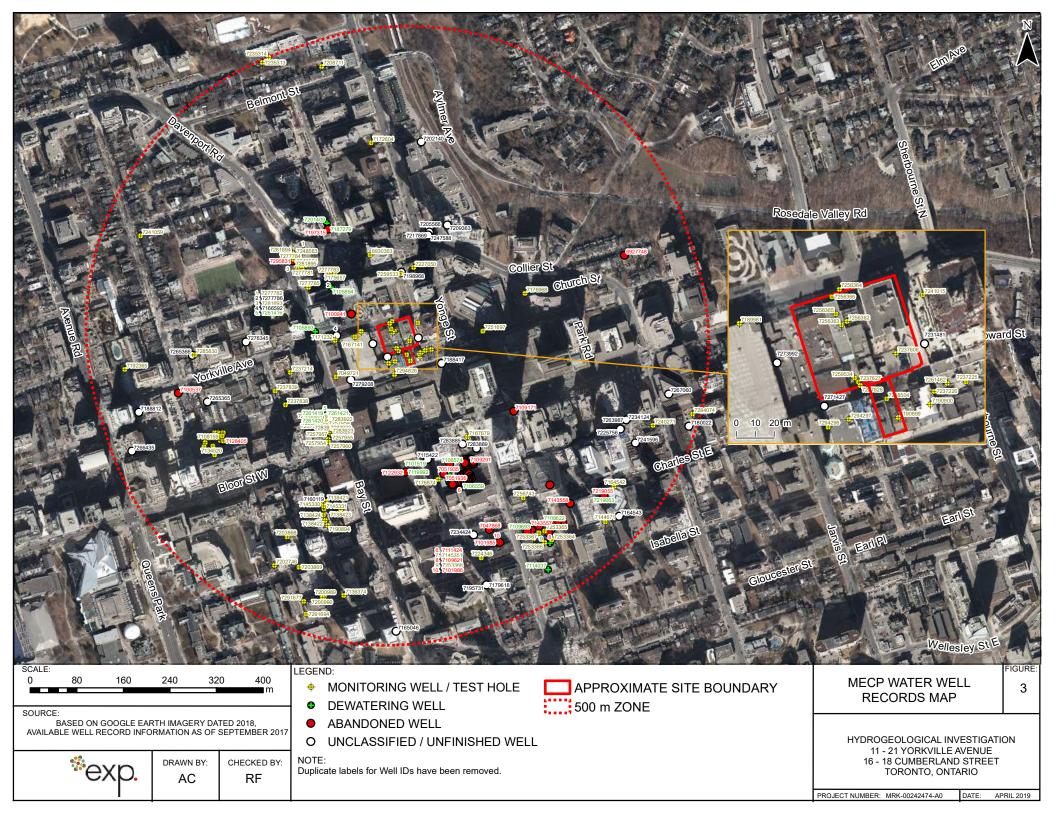
9 References

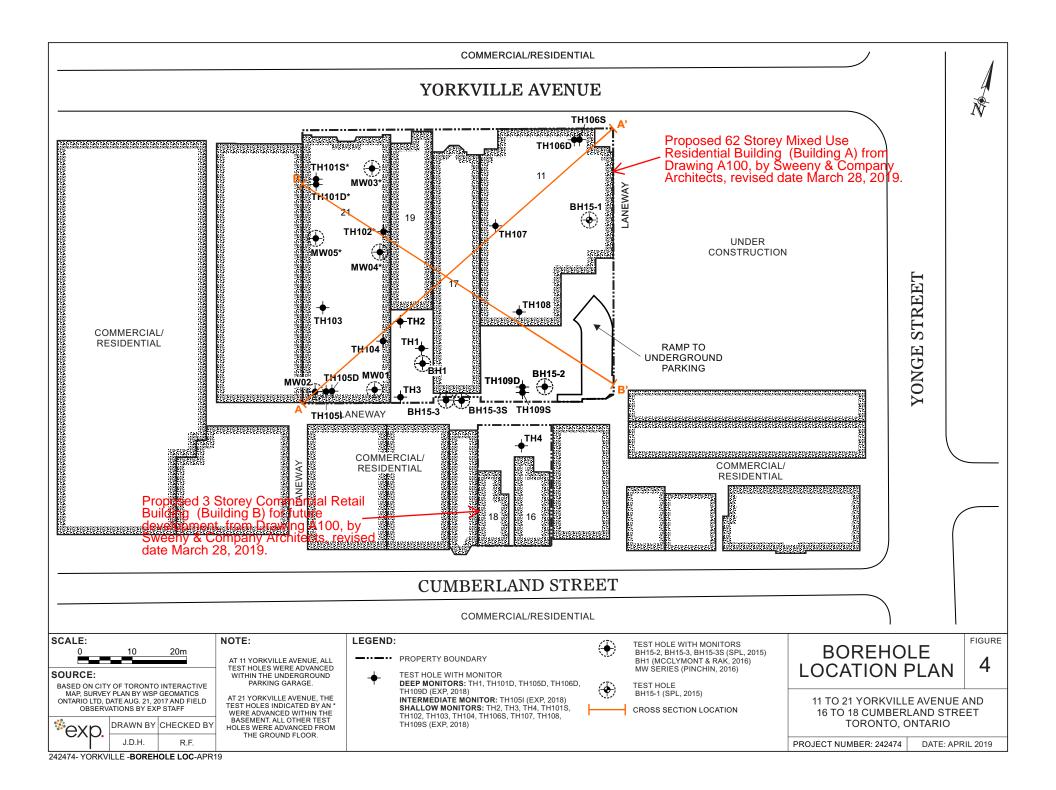
- Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.
- Well Records from the Ministry of the Environment, Conservation and Parks (MECP) Water Well Record (WWR) Database;
- Ontario Ministry of Natural Resources Base Map Sheet 10 17 6250 48350 and Sheet 10 17 6300 48350;
- Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.
- Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.
- J.P. Powers, A.B. Corwin, P.C. Schmall, and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.
- Oak Ridges Moraine Groundwater Program. Accessed to the website (https://oakridgeswater.ca/) dated October 2018.
- Toronto and Region Conservation (2008/2009), Humber/Don River State of the Watershed Report Geology and Groundwater Resources.
- EXP Services Inc. (March 13, 2018) Preliminary Hydrogeological Investigation, 11 Yorkville Avenue, 11 to 21 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, ON, prepared for 11 Yorkville Partners Inc.;
- EXP Services Inc. (March 8, 2018) Preliminary Geotechnical Assessment, 11 Yorkville Avenue, 11 to 21 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, ON, prepared for 11 Yorkville Partners Inc.;
- EXP Services Inc. (February 28, 2019) Phase Two Environmental Site Assessment Update, 11 Yorkville Avenue, Toronto, ON, prepared for 11 Yorkville Partners Inc.;
- Drawing A101b Mat Slab detail by Sweeny & Company Architects, revised date May 11, 2019;
- Drawing A101 P4 Floor Plan by Sweeny & Company Architects, revised date May 11, 2019;
- Drawing A105 Ground Floor Plan by Sweeny & Company Architects, revised date May 11, 2019
- Drawing A201 Building Sections by Sweeny & Company Architects, revised date May 11, 2019.

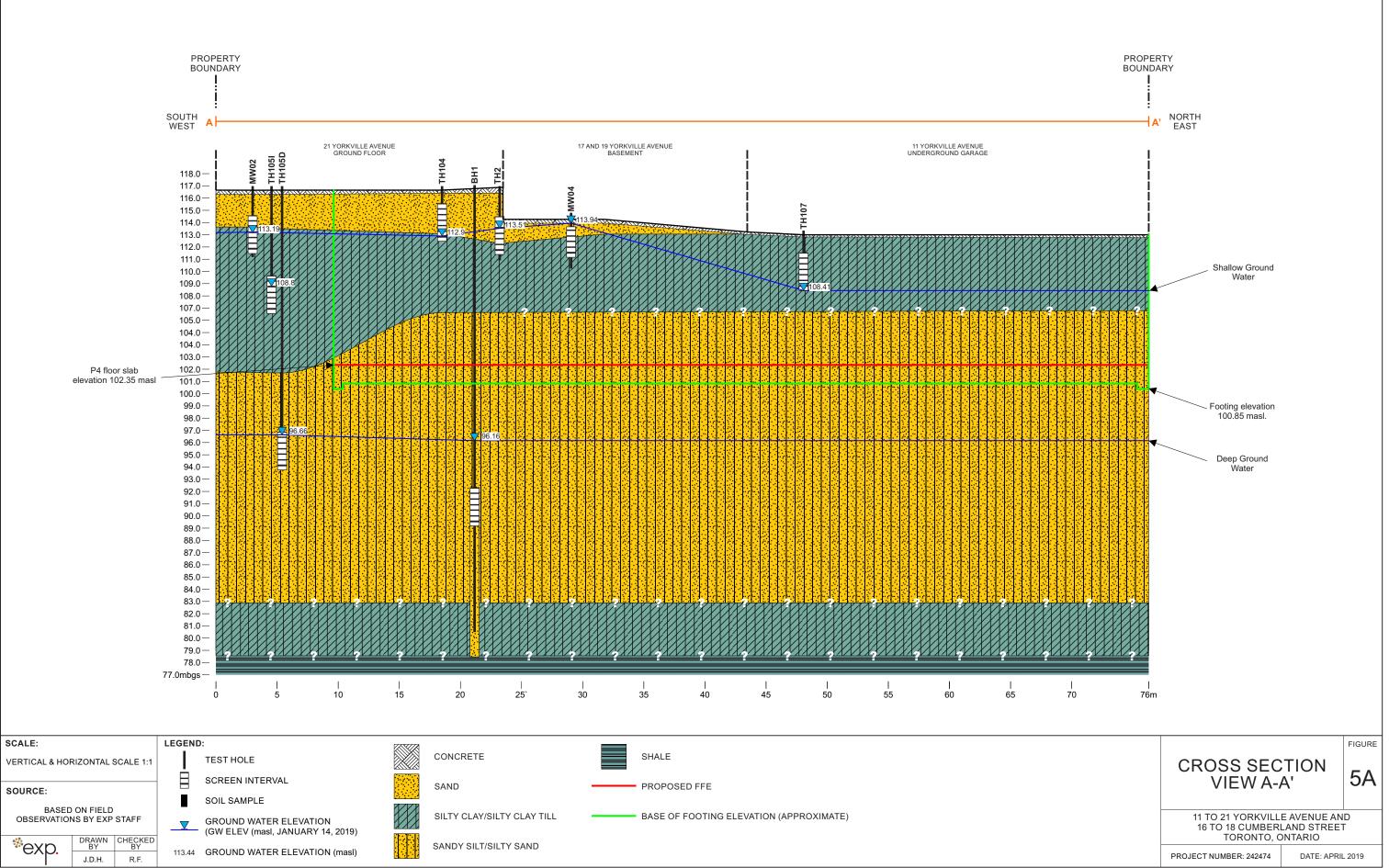


EXP Services Inc.


Project Number: MRK-00242474-A0 Date: Updated July 25, 2019

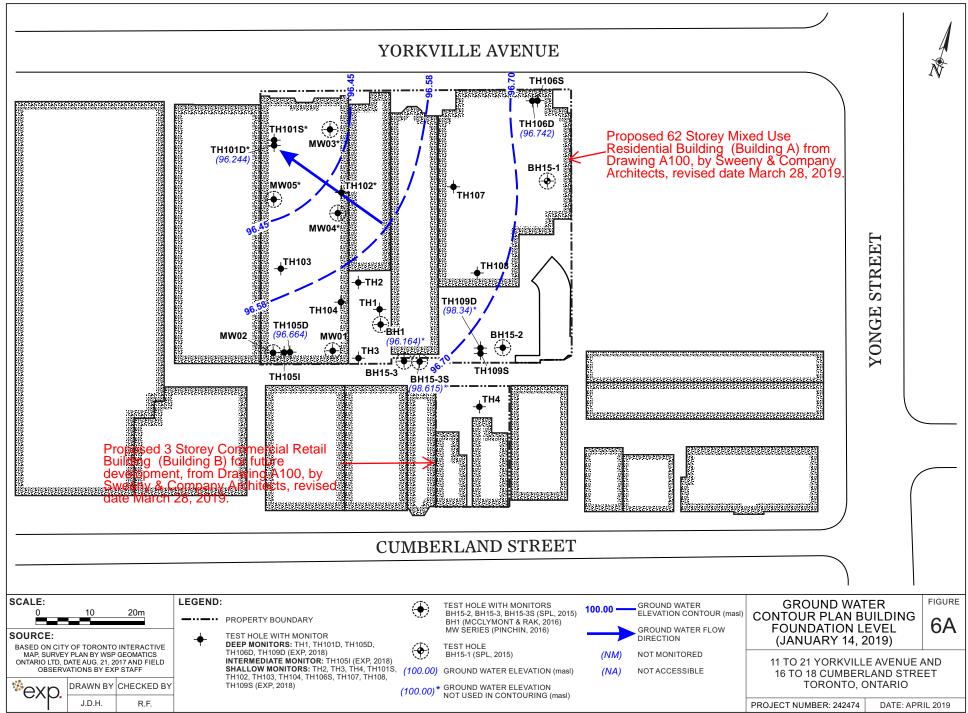

Figures

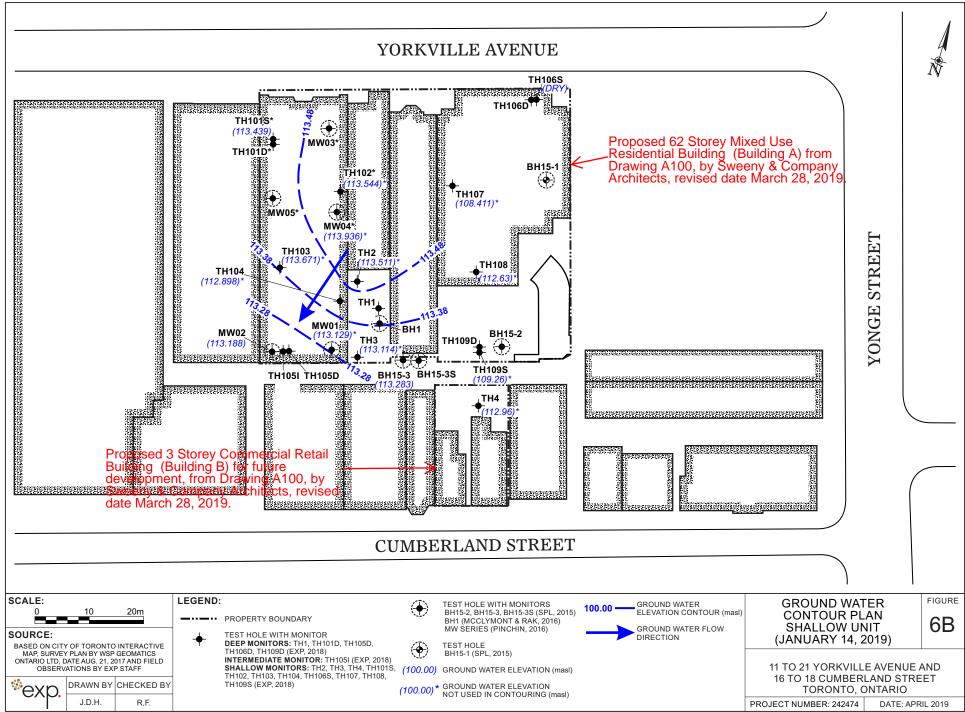




242474-LOCALITY-APR19






²⁴²⁴⁷⁴⁻XSEC A-A'-APR19

242474-XSEC B-B'-APR19

242474-GWC BUILDING FOUNDATION LEVEL-APR19

²⁴²⁴⁷⁴⁻GWC BUILDING FOUNDATION LEVEL-SHALLOW-APR19

EXP Services Inc.

Project Number: MRK-00242474-A0 Date: Updated July 25, 2019

Appendix A – MECP WWR Summary Table

Appendix -A MECP Water Well Record Summary - 500m 11 Yorkville, Toronto, ON

							On-Site						
BORE_HOLE_	WELL_ID	DATE		NORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE TO SITE CENTROID (m)	WATER FOUND (m BGS)	1st USE	2nd USE	FINAL STATUS
1005307863		1/23/2015			115.6 115.2	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	11 YORKVILLE AVE	TORONTO TORONTO	23 24		Monitoring and Test Hole Monitoring		Monitoring and Test Hole Observation Wells
1005309326					115.2	margin of error : 30 m - 100 m	11-17 YORKVILLE AVE	TORONTO	26		Monitoring		Observation Wells
1005871275 1005871278		12/17/2015 12/17/2015		4836650 4836648	115.5 115.4	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	21 YORKVILLE RD 21 YORKVILLE RD	Toronto Toronto	10 10		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005871284 1005871287		12/17/2015 12/18/2015		4836654 4836663	115.5 115.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	21 YORKVILLE RD 21 YORKVILLE RD	Toronto Toronto	17 25		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
		2/24/2016			115.3	margin of error : 30 m - 100 m	19 YORKVILLE AVENUE	Toronto	22		Monitoring		Observation Wells
					ELEVATION		Off-Site	1	DISTANCE TO SITE	WATER FOUND			
BORE_HOLE_	WELL_ID	DATE	EAST83	NORTH83	(m ASL)	LOCATION ACCURACY	STREET	СІТҮ	CENTROID (m)	(m BGS)	1st USE	2nd USE	FINAL STATUS
23051935	7051935	4/13/2007		4836420	113.8	margin of error : 10 - 30 m			239	24.3	Not Used		Observation Wells
23051936 1000055238	7051936 7100537	4/13/2007 12/1/2007	630002 629546	4836404 4836543	113.9 115.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR ST. WEST	TORONTO	251 389	22.0	Not Used Not Used		Observation Wells Observation Wells
1000067387 1001485054		10/31/2007 12/20/2007		4836679 4836429	115.7 114.2	margin of error : 10 - 30 m margin of error : 10 - 30 m	YORKVILLE AVENUE 35 BALMUTO STREET	Toronto	88 219	15.2 18.0	Not Used Dewatering		Test Hole Dewatering
1001505223	7101985	12/19/2007	630095	4836286	113.5	margin of error : 10 - 30 m	35 BALMOTO STALLT		396	17.5	Not Used		Test Hole
1001505226 1001605468	7101986 7105893	12/20/2007 4/10/2008	630098 629781	4836286 4836649	113.5 116.1	margin of error : 10 - 30 m margin of error : 10 - 30 m	BAY AND SCOLLARD	Toronto	397 141	17.1 22.9	Not Used Dewatering		Monitoring and Test Hole Dewatering
1001605471 1001616095	7105894 7106574	4/10/2008 5/9/2008	629808 630039	4836725 4836420	116.0 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	BAY AND SCOLLARD 35 BALMUTO STREET	Toronto	141 251	100.0 3.0	Dewatering Dewatering		Dewatering Dewatering
1001658146	7108159	6/19/2008	629618	4836462	116.0	margin of error : 10 - 30 m	130 BLOOR STREET WEST	Toronto	353	5.0	Monitoring		Test Hole
1001710611 1001726498	7109171 7109693	8/1/2007 7/15/2008	630122 630219	4836512 4836353	114.3 114.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	1 BLOOR STREET EAST 21 BALMUTO ST.	Toronto Toronto	238 414	1.0	Not Used Dewatering		Observation Wells Dewatering
1002026092 1002687176	7119992	4/29/2008	629936 630219	4836407 4836353	114.7 114.0	margin of error : 30 m - 100 m margin of error : 10 - 30 m	NORTH EAST CORNER OF BAY AND YORKVILLE 21 BALMUTO ST.	Toronto Toronto	235 414	1.0 1.0	Domestic Dewatering		Dewatering Dewatering
1002687185	7109693	4/30/2008	630200	4836320	114.0	margin of error : 10 - 30 m	21 BALMUTO ST.	Toronto	425	1.0	Dewatering		Dewatering
1002687194 1002687203	7109693 7109693	5/1/2008 5/22/2008	630166 630182	4836314 4836302	113.9 114.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.	Toronto Toronto	409 428	1.0 1.0	Dewatering Dewatering		Dewatering Dewatering
1002687212 1002687221	7109693 7109693	5/23/2008 5/24/2008	630184 630153	4836285 4836307	113.6 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.	Toronto Toronto	443 407	1.0 1.0	Dewatering Dewatering		Dewatering Dewatering
1002687230	7109693	5/20/2008	630198	4836323	114.0	margin of error : 10 - 30 m	21 BALMUTO ST.	Toronto	422	1.0	Dewatering		Dewatering
1002687239 1002694433	7109693 7128405	5/20/2008 1/29/2008	630145 629623	4836306 4836461	113.6 116.0	margin of error : 10 - 30 m margin of error : 30 m - 100 m	21 BALMUTO ST. 130 BLOOR STREET WEST	Toronto TORONTO	403 350	1.0 4.0	Dewatering Not Used		Dewatering Observation Wells
1002774481	7106574 7106574	5/9/2008	630038 630051	4836423	113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		248	3.0	Dewatering		Dewatering Dewatering
1002774490 1002774499	7106574	5/9/2008 5/9/2008	630051	4836421 4836422	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET		256 256	3.0 3.0	Dewatering Dewatering		Dewatering
1002774508 1002774521	7106574 7106574	5/9/2008 5/9/2008	630053 630046	4836425 4836430	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		253 245	3.0 3.0	Dewatering Dewatering		Dewatering Dewatering
1002774530	7106574	5/9/2008	630052	4836428	113.5	margin of error : 10 - 30 m	35 BALMUTO STREET		250	3.0	Dewatering		Dewatering
	7106574 7106574	5/9/2008 5/9/2008	630043 630046	4836429 4836428	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		245 247	3.0 3.0	Dewatering Dewatering		Dewatering Dewatering
1002774557 1002774566	7106574 7106574	5/9/2008 5/9/2008	630037 630038	4836428 4836425	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		243 246	3.0 3.0	Dewatering Dewatering		Dewatering Dewatering
1002774575	7106574	5/9/2008	630040	4836418	113.6	margin of error : 10 - 30 m	35 BALMUTO STREET		253	3.0	Dewatering		Dewatering
1002774584 1002774593	7106574 7106574	5/9/2008 5/9/2008	630043 630045	4836418 4836419	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		254 254	3.0 3.0	Dewatering Dewatering		Dewatering Dewatering
1002774602 1002776549	7106574 7108159	5/9/2008 6/9/2008	630048 629618	4836420 4836462	113.5 116.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 130 BLOOR STREET WEST	Toronto	255 353	3.0	Dewatering Monitoring		Dewatering Test Hole
1002776558	7108159	6/10/2008	629620	4836466	116.0	margin of error : 10 - 30 m	130 BLOOR STREET WEST	Toronto	350		Monitoring		Test Hole
1002776567 1002776576	7108159 7108159	6/10/2008 6/10/2008	629618 629613	4836466 4836466	116.0 116.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR STREET WEST 130 BLOOR STREET WEST	Toronto Toronto	351 356		Monitoring Monitoring		Test Hole Test Hole
1002776585 1002776594	7108159 7108159	6/11/2008 6/11/2008	629610 629605	4836466 4836466	116.0 116.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR STREET WEST 130 BLOOR STREET WEST	Toronto Toronto	358 363		Monitoring Monitoring		Test Hole Test Hole
1002776603	7108159	6/13/2008	629602	4836466	116.0	margin of error : 10 - 30 m	130 BLOOR STREET WEST	Toronto	365		Monitoring		Test Hole
1002776612 1002776621	7108159 7108159	6/13/2008 6/13/2008	629598 629610	4836466 4836471	115.9 116.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR STREET WEST 130 BLOOR STREET WEST	Toronto Toronto	369 356		Monitoring Monitoring		Test Hole Test Hole
1002776630 1002776663	7108159 7108159	6/16/2008 6/16/2008	629607 629615	4836471 4836471	116.0 116.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR STREET WEST 130 BLOOR STREET WEST	Toronto Toronto	359 352		Monitoring		Test Hole Test Hole
1002776672	7108159	6/16/2008	629608	4836475	116.0	margin of error : 10 - 30 m	130 BLOOR STREET WEST	Toronto	356		Monitoring Monitoring		Test Hole
1002776681 1002776690	7108159 7108159	6/17/2008 6/17/2008			116.0 116.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR STREET WEST 130 BLOOR STREET WEST	Toronto Toronto	353 349		Monitoring Monitoring		Test Hole Test Hole
1002776699 1002776708	7108159 7108159		629618 629623	4836474 4836475	116.0 116.0	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR STREET WEST 130 BLOOR STREET WEST	Toronto Toronto	347 343		Monitoring		Test Hole Test Hole
1002839322	7134520	11/12/2009	629623	4836461	116.0	margin of error : 30 m - 100 m	130 BLOOR ST W	Toronto	350	3.0	Monitoring Monitoring		Test Hole
1002896339 1002925505		11/18/2009 11/19/2009		4836195 4836357	112.7 114.6	margin of error : 10 - 30 m margin of error : 30 m - 100 m	70 SAINT MARY STREET 77 BAY ST	Toronto TORONTO	456 310		Test Hole Monitoring and Test Hole		Test Hole Monitoring and Test Hole
1002925508 1002925511	7138422 7138423	12/2/2009 12/3/2009	629798 629825	4836324 4836343	114.4 114.3	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	77 BLOOR ST 77 BLOOR ST W	TORONTO TORONTO	341 314		Monitoring Test Hole		Monitoring and Test Hole
1002925514	7138424	11/18/2009	629795	4836334	114.5	margin of error : 30 m - 100 m	77 BLOOR ST W	TORONTO	333		Monitoring		
1002978675 1002984810	7144671 7145330	3/17/2010 4/24/2010	630279 629794	4836322 4836352	113.4 114.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	38 ISABELLA ST 77 BLOOR STREET WEST	Toronto Toronto	479 317		Test Hole Monitoring and Test Hole		Test Hole Monitoring and Test Hole
1002984812 1002984858		4/24/2010 4/24/2010		4836344 4836349	114.5 114.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	77 BLOOR STREET WEST 77 BLOOR STREET WEST	Toronto Toronto	323 319		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1003265179	7134520	11/12/2009	629621	4836470	116.0	margin of error : 10 - 30 m	130 BLOOR ST W	Toronto	347	3.0	Monitoring		Test Hole
1003265188 1003265197					116.0 115.9	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR ST W 130 BLOOR ST W	Toronto Toronto	370 378	3.0 3.0	Monitoring Monitoring		Test Hole Test Hole
1003265206 1003265215		11/12/2009		4836451 4836443	115.8 115.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	130 BLOOR ST W 130 BLOOR ST W	Toronto Toronto	383 385	3.0 3.0	Monitoring Monitoring		Test Hole Test Hole
1003265224	7134520	11/12/2009	629608	4836437	115.9	margin of error : 10 - 30 m	130 BLOOR ST W	Toronto	375	3.0	Monitoring		Test Hole
11108588 23047868	6927748 7047868	3/24/2004 3/13/2007	630312 630080	4836780 4836308	114.7 114.0	margin of error : 100 m - 300 m margin of error : 10 - 30 m	9 BLOOR STREET EAST	TORONTO TORONTO	414 369		Not Used Not Used		Test Hole Observation Wells
1001616050 1001799226	7106559 7111424	6/2/2008 7/24/2008	630047 630047	4836401 4836401	113.6 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO ST.		271 271		Dewatering Dewatering		Dewatering Abandoned-Other
1002774211	7106559	6/2/2008	630042	4836393	113.7	margin of error : 10 - 30 m	21 BALMUTO STREET		276		Dewatering		Dewatering
1002774219 1002774227	7106559 7106559	6/2/2008 6/2/2008	630039 630036	4836393 4836392	113.7 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		275 275		Dewatering Dewatering		Dewatering Dewatering
1002774235	7106559 7106559	6/2/2008 6/2/2008	630034 630032		113.7 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		275 275		Dewatering Dewatering		Dewatering Dewatering
1002774251	7106559	6/2/2008	630029	4836389	113.7	margin of error : 10 - 30 m	21 BALMUTO STREET		274		Dewatering		Dewatering
1002774259 1002774267	7106559 7106559	6/2/2008 6/2/2008	630026 630024	4836388 4836388	113.7 113.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		274 273		Dewatering Dewatering		Dewatering Dewatering
1002774275 1002774283	7106559 7106559	6/2/2008 6/2/2008		4836386 4836386	113.8 113.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		274 273		Dewatering		Dewatering Dewatering
1002774298	7106559	6/2/2008	630032	4836402	113.7	margin of error : 10 - 30 m	21 BALMUTO STREET		264		Dewatering		Dewatering
1002774307 1002774316		6/2/2008 6/2/2008	630035 630038	4836403 4836404	113.6 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		264 264		Dewatering Dewatering		Dewatering Dewatering
1002774325 1002774334	7106559 7106559	6/2/2008 6/2/2008	630041 630043	4836404 4836406	113.6 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		266 265		Dewatering		Dewatering Dewatering
1002774343	7106559	6/2/2008	630045	4836404	113.6	margin of error : 10 - 30 m	21 BALMUTO STREET		268		Dewatering		Dewatering
1002774352 1002774361	7106559 7106559	6/2/2008 6/2/2008	630047 630049	4836399 4836396	113.7 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		273 277		Dewatering Dewatering		Dewatering Dewatering
1002774370	7106559	6/2/2008	630046 630044	4836395	113.7	margin of error : 10 - 30 m	21 BALMUTO STREET		276		Dewatering		Dewatering
1002774379 1002774395	7106559	6/2/2008 6/2/2008	630014	4836385	113.7 113.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		276 273		Dewatering Dewatering		Dewatering Dewatering
1002774404 1002774413	7106559 7106559	6/2/2008 6/2/2008	630013 630011	4836387 4836390	113.8 113.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		270 267		Dewatering Dewatering		Dewatering Dewatering
1002774422	7106559	6/2/2008	630010	4836394	113.8	margin of error : 10 - 30 m	21 BALMUTO STREET		263		Dewatering		Dewatering
1002774431 1002774440	7106559	6/2/2008 6/2/2008		4836401	113.8 113.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO STREET		260 256		Dewatering Dewatering		Dewatering Dewatering
1002774449 1002779166		6/2/2008 7/24/2008		4836404 4836402	113.8 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO STREET 21 BALMUTO ST.		253 264		Dewatering Dewatering		Dewatering Abandoned-Other
1002779175	7111424	7/24/2008	630035	4836403	113.6	margin of error : 10 - 30 m	21 BALMUTO ST.		264		Dewatering		Abandoned-Other
1002779183 1002779191		7/24/2008 7/24/2008	630038 630041	4836404 4836404	113.6 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.		264 266		Dewatering Dewatering		Abandoned-Other Abandoned-Other
1002779199 1002779207	7111424	7/24/2008	630043	4836406	113.6 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.		265 268		Dewatering Dewatering		Abandoned-Other Abandoned-Other
		, ., _000											

Appendix -A MECP Water Well Record Summary - 500m 11 Yorkville, Toronto, ON

							Off-Site						
BORE_HOLE_	WELL JD	DATE	EAST83	NORTH83	ELEVATION	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE TO SITE		1st USE	2nd USE	FINAL STATUS
	_				(m ASL)			citi	CENTROID (m)	(m BGS)		2110 032	
1002779215 1002779223					113.7 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.		273 277		Dewatering Dewatering		Abandoned-Other Abandoned-Other
1002779231	7111424	7/24/2008	630046	4836395	113.7	margin of error : 10 - 30 m	21 BALMUTO ST.		276		Dewatering		Abandoned-Other
1002779239 1002779248		7/24/2008	630044 630042	4836394 4836393	113.7 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.		276 276		Dewatering Dewatering		Abandoned-Other Abandoned-Other
		7/24/2008	630039 630036	4836393 4836392	113.7 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.		275 275		Dewatering Dewatering		Abandoned-Other Abandoned-Other
1002779275	7111424	7/25/2008	630034	4836391	113.7	margin of error : 10 - 30 m	21 BALMUTO ST.		275		Dewatering		Abandoned-Other
		7/25/2008 7/25/2008	630032 630029	4836390 4836389	113.7 113.7	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.		275 274		Dewatering Dewatering		Abandoned-Other Abandoned-Other
1002779302	7111424	7/25/2008	630026	4836388	113.7	margin of error : 10 - 30 m	21 BALMUTO ST.		274		Dewatering		Abandoned-Other
1002779311 1002779320		7/25/2008 7/25/2008	630024 630020	4836388 4836386	113.8 113.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	21 BALMUTO ST. 21 BALMUTO ST.		273 274		Dewatering Dewatering		Abandoned-Other Abandoned-Other
1002779329		7/25/2008	630017		113.8	margin of error : 10 - 30 m	21 BALMUTO ST.		273		Dewatering		Abandoned-Other
11559163 1001726040	6930363 7109621	6/16/2006 6/8/2008	629875 630186	4836781 4836308	116.0 114.1	margin of error : 10 - 30 m margin of error : 10 - 30 m	INTERSECTION OF CHURCH AND YONGE 21 BAI MATO ST.	TORONTO	147 425	2.0			Observation Wells Abandoned-Other
1001726043	7109622	7/5/2007	630192	4836320	114.1	margin of error : 10 - 30 m	21 BALMATO ST.	Toronto	420				Dewatering
		10/7/2008 5/8/2009	629974 629936		114.2 114.7	margin of error : 10 - 30 m margin of error : 30 m - 100 m	35 BALMUNTO ST N.E. CORNER OF BAY & YORKVILLE	Toronto	219 235				Abandoned-Other
1002959667	7143557	7/5/2007	630192	4836320	114.1	margin of error : 30 m - 100 m	21 BAWUTO ST.	TORONTO	420				Abandoned-Other
1002959669 1003294024	7143558 7143558	1/20/2010 1/28/2010		4836353 4836353	114.0 114.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	21 BALMUTO ST 21 BALMUTO ST	Toronto Toronto	414 414	10.0 10.0			Abandoned-Other Abandoned-Other
1003294033	7143558	1/28/2010	630206	4836320	114.0	margin of error : 30 m - 100 m	21 BALMUTO ST	Toronto	429	10.0			Abandoned-Other
1003294042 1003294051	7143558 7143558	1/28/2010 1/28/2010		4836314 4836302	113.9 114.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	21 BALMUTO ST 21 BALMUTO ST	Toronto Toronto	409 428	10.0 10.0			Abandoned-Other Abandoned-Other
1003294060		1/28/2010			112.8	margin of error : 30 m - 100 m	21 BALMUTO ST	Toronto	367	10.0			Abandoned-Other
1003294069 1003294078		1/28/2010 1/28/2010		4836307 4836323	113.6 114.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	21 BALMUTO ST 21 BALMUTO ST	Toronto Toronto	407 422	10.0 10.0			Abandoned-Other Abandoned-Other
1003294087	7143558	1/28/2010	630145	4836306	113.6	margin of error : 30 m - 100 m	21 BALMUTO ST	Toronto	403	10.0			Abandoned-Other
23049721 1001719338	7049721 7109291	8/2/2007 7/11/2008	629817 630039	4836571 4836420	116.0 113.6	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET		127 251				Observation Wells Abandoned-Other
1002777696	7109291	6/17/2008	630046	4836430	113.5	margin of error : 10 - 30 m	35 BALMUTO STREET		245				Abandoned-Other
1002777705 1002777714		6/17/2008 6/17/2008		4836428 4836429	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		250 245				Abandoned-Other Abandoned-Other
1002777723	7109291	6/17/2008	630040	4836428	113.5	margin of error : 10 - 30 m	35 BALMUTO STREET		244				Abandoned-Other
1002777732 1002777741		6/17/2008 6/17/2008	630037 630038	4836428 4836425	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		243 246				Abandoned-Other Abandoned-Other
1002777750	7109291	6/17/2008	630040	4836418	113.6	margin of error : 10 - 30 m	35 BALMUTO STREET		253				Abandoned-Other
1002777759 1002777768	7109291 7109291	6/17/2008 6/17/2008	630043 630045	4836418 4836419	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		254 254				Abandoned-Other Abandoned-Other
1002777777	7109291	6/17/2008	630048	4836420	113.5	margin of error : 10 - 30 m	35 BALMUTO STREET		255				Abandoned-Other
1002777801 1002777810		6/17/2008 6/17/2008	630038 630051	4836423 4836421	113.5 113.5	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 35 BALMUTO STREET		248 256				Abandoned-Other Abandoned-Other
1002777819	7109291	6/17/2008	630053	4836422	113.5	margin of error : 10 - 30 m	35 BALMUTO STREET		256				Abandoned-Other
1002777828 1003524862		6/17/2008 1/29/2011	630053 630294	4836425 4836383	113.5 114.2	margin of error : 10 - 30 m margin of error : 10 - 30 m	35 BALMUTO STREET 45 CHARLES STREET	Toronto	253 453		Monitoring and Test Hole		Abandoned-Other Monitoring and Test Hole
1003548498	7167141	4/8/2011	629849		115.5	margin of error : 10 - 30 m	50 CUMBER LAND	Toronto	73		Monitoring		Observation Wells
		8/11/2011 10/5/2011	630042 629815	4836468 4836634	113.5 115.8	margin of error : 10 - 30 m margin of error : 10 - 30 m	774 YONGE ST 50 CUMBERLAND ST.	Toronto Toronto	211 108		Monitoring and Test Hole Monitoring and Test Hole		Test Hole Observation Wells
1003614288				4836974	115.3	margin of error : 10 - 30 m	901 YONGE ST	Toronto	335		Monitoring		Observation Wells
		12/21/2011 1/6/2012			114.0 115.6	margin of error : 100 m - 300 m margin of error : 30 m - 100 m	3 CHARLES ST. WEST 820 CHURCH STREET	TORONTO TORONTO			Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1004157041 1004186139		5/25/2012 9/12/2012		4836825 4836649	116.1 115.5	margin of error : 30 m - 100 m	32 DAVENPORT 27 YORKVILLE RD	Toronto TORONTO	219 63	16.8	Dewatering		Dewatering
		9/12/2012 10/13/2012			115.5 114.3	margin of error : 10 - 30 m margin of error : 30 m - 100 m	77 BLOOR ST WEST	Toronto	63 347		Monitoring and Test Hole Monitoring		Test Hole Observation Wells
1004198766 1004198769		10/16/2012		4836599 4836606	115.1 115.3	margin of error : 30 m - 100 m	30 CUBERLAND ST 226 CUMBERLAND ST	Toronto	48		Monitoring and Test Hole		Test Hole
1004198769		10/16/2012 11/13/2012		4836584	115.3	margin of error : 30 m - 100 m margin of error : 10 - 30 m	136 YORKVILLE RD	Toronto TORONTO	53 472		Monitoring and Test Hole Monitoring		Test Hole
1004254424 1004279185	7197315 7200989	11/15/2012 4/8/2013	629803 629797		116.1 112.7	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	32 DAVENPORT RD. 2 ST. THOMAS STREET	Toronto TORONTO	219 466		Dewatering Monitoring and Test Hele		Abandoned-Other
1004279185	7200989	4/8/2013	629793	4836193	112.7	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	2 ST. THOMAS STREET 2 ST. THOMAS STREET	TORONTO	466		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1004290807 1004331441	7201409 7202746	2/12/2013 4/30/2013	629801	4836835 4836247	116.0 114.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	32 DAVENPORT 2 ST THOMAS ST	Toronto Toronto	228 448	0.8	Dewatering Monitoring		Dewatering Observation Wells
1004331441	7202748	5/1/2013	629733	4836296	114.0	margin of error : 30 m - 100 m	2 ST THOMAS ST	Toronto	394		Monitoring		Observation Wells
1004589339 1004955919	7208711 7224346	8/28/2013 7/2/2014	629792 630066	4837105 4836260	113.1 112.7	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1027 YONGE STREET 10 ST. MARY STREET	Toronto Toronto	481 408	3.0	Monitoring and Test Hole Monitoring		Monitoring and Test Hole
1004933919				4836260	115.9	margin of error : 30 m - 100 m	830 YONGE ST.	TORONTO	120	5.0	Monitoring and Test Hole		Test Hole
1005278326 1005278329		12/9/2014 12/9/2014			109.7 108.7	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1008 YONGE STREET 1008 YONGE STREET	Toronto Toronto	524 528		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005305177	7237214	11/17/2014	629738	4836579	116.3	margin of error : 30 m - 100 m	GENOA ST	Toronto	195		Monitoring		Observation Wells
1005305293 1005305296		12/8/2014 12/8/2014			115.6 115.4	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	826-834 YONGE ST 826-834 YONGE ST	Toronto Toronto	62 50		Monitoring Monitoring		Observation Wells Observation Wells
1005309356	7237838	1/19/2015	629730	4836523	116.1	margin of error : 30 m - 100 m	CUMBERLAND ST EAST OF BELLAIR AT NORTH EDGE	TORONTO			Monitoring		Observation Wells
1005309359 1005314122		1/19/2015			116.2 115.2	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	BELLAIR ST. NORTH OF CUMBERLAND 18 CUMBERLAND ST	TORONTO	231 36	3.7	Monitoring		Observation Wells
1005327050	7240271	3/5/2015	630361	4836488	115.4	margin of error : 30 m - 100 m	640 CHURCHSTREET	TORONTO	465	5.7	Monitoring and Test Hole		Observation Wells
	7241015 7241059	2/2/2015 2/9/2015	629957 629481	4836664 4836814	115.9 116.9	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	848 YONGE ST 70 HAZELTON AVENUE	Toronto Toronto	41 474		Monitoring Monitoring and Test Hole		Observation Wells Monitoring and Test Hole
1005694558	7248583	8/24/2015	629745	4836782	116.4	margin of error : 30 m - 100 m	BAY STREET 7 SCOLLARD STREET	Toronto	226		Monitoring		Observation Wells
1005694561 1005791578	7248584 7251697	8/24/2015 10/1/2015			116.2 116.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	BAY STREET & SCOLLARD STREET 771 YONGE ST	Toronto Toronto	199 147	13.7	Monitoring Monitoring and Test Hole		Observation Wells Test Hole
1005823261	7253364	10/27/2015	630187	4836291	113.8	margin of error : 30 m - 100 m	651 YONGE STREET	Toronto	440	-	Monitoring and Test Hole		Monitoring and Test Hole
		10/27/2015 10/27/2015			114.0 113.5	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	651 YONGE STREET 651 YONGE STREET	Toronto Toronto	420 436		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005823270	7253367	10/27/2015	630165	4836303	113.7	margin of error : 30 m - 100 m	651 YONGE STREET	Toronto	417		Monitoring and Test Hole		Monitoring and Test Hole
		10/27/2015 12/18/2015			113.4 115.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	651 YONGE STREET 21 YORKVILLE RD	Toronto Toronto	420 27		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005873392	7256743	11/20/2015	630138	4836363	114.0	margin of error : 30 m - 100 m	6 CHARLES STREET EAST	Toronto	353		Monitoring and Test Hole		Monitoring and Test Hole
1005888696 1005888699	7257954 7257955	1/11/2016 1/11/2016		4836464 4836474	115.6 115.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1200 BAY STREET 1200 BAY STREET	TORONTO TORONTO			Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005888702	7257956	1/11/2016	629796	4836492	115.8	margin of error : 30 m - 100 m	1200 BAY STREET	TORONTO	196		Monitoring and Test Hole		Monitoring and Test Hole
1005888705 1005888708		1/12/2011 1/14/2016		4836478 4836481	115.7 115.7	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1200 BAY STREET 1200 BAY STREET	TORONTO TORONTO	201 197		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005888711	7257959	1/14/2016	629800	4836492	115.8	margin of error : 30 m - 100 m	1200 BAY STREET	TORONTO	193		Monitoring and Test Hole		Monitoring and Test Hole
1005888714 1005909887		1/14/2016 2/25/2016		4836459 4836748	115.5 116.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1200 BAY STREET 874-878 YONGE ST	TORONTO Toronto	218 106		Monitoring and Test Hole Monitoring		Monitoring and Test Hole Observation Wells
1005930696	7261462	3/28/2016	629970	4836617	115.5	margin of error : 30 m - 100 m	8 CUMBERLAND ST	TORONTO	54		Monitoring		Observation Wells
1006319984 1006319987		11/11/2016 11/11/2016		4836787 4836748	116.3 116.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	58 SCOLLARD STREET 58 SCOLLARD STEET	Toronto Toronto	215 157		Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1006319990	7277784	11/11/2016	629759	4836786	116.3	margin of error : 30 m - 100 m	58 SCOLLARD STREET	Toronto	218		Monitoring and Test Hole		Monitoring and Test Hole
1003744617 1003638134		10/5/2008 1/4/2012			112.1 116.0	margin of error : 10 - 30 m margin of error : 30 m - 100 m	W OF WOODBINE & N OF ELGIN MILLS SCROLLARD STREET	Toronto	478 152	3.1	Dewatering		Dewatering Observation Wells
1004377473	7203869	5/3/2013	629753	4836244	113.7	margin of error : 30 m - 100 m	2 ST THOMAS ST	Toronto	432				Observation Wells
1004730440 1004730464	7219055 7219063	3/6/2013 12/18/2012		4836367 4836367	114.0 114.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	45 CHARLES ST. E 45 CHARLES ST. E	TORONTO TORONTO	449 449	1.2			Abandoned-Other Dewatering
1005929952	7261416	3/24/2016	629800	4836503	115.9	margin of error : 30 m - 100 m	1200 BAY STREET	TORONTO					Dewatering
1005929955 1005929958		3/24/2016 3/24/2016		4836503 4836504	115.9 115.9	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1200 BAY STREET 1200 BAY STREET	TORONTO TORONTO	186 186				Dewatering Dewatering
1005929961 1005929964		3/24/2016 3/24/2016			115.9 115.9	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1200 BAY STREET 1200 BAY STREET	TORONTO TORONTO					Dewatering Dewatering
1005929967	7261421	3/24/2016	629800	4836502	115.9	margin of error : 30 m - 100 m	1200 BAY STREET 1200 BAY STREET	TORONTO	186				Dewatering
1003483269		12/11/2010		4836356 4836331	114.6	margin of error : 10 - 30 m			311				
1003524864 1003531856		2/12/2011 7/1/2011	630303 629920		113.5 112.2	margin of error : 10 - 30 m margin of error : 10 - 30 m			492 509				
1003544654 1003714472		6/16/2011			115.8 114.2	margin of error : 10 - 30 m			104 524				
1003714472					114.2 112.0	margin of error : 10 - 30 m margin of error : 30 m - 100 m			455				

Appendix -A MECP Water Well Record Summary - 500m 11 Yorkville, Toronto, ON

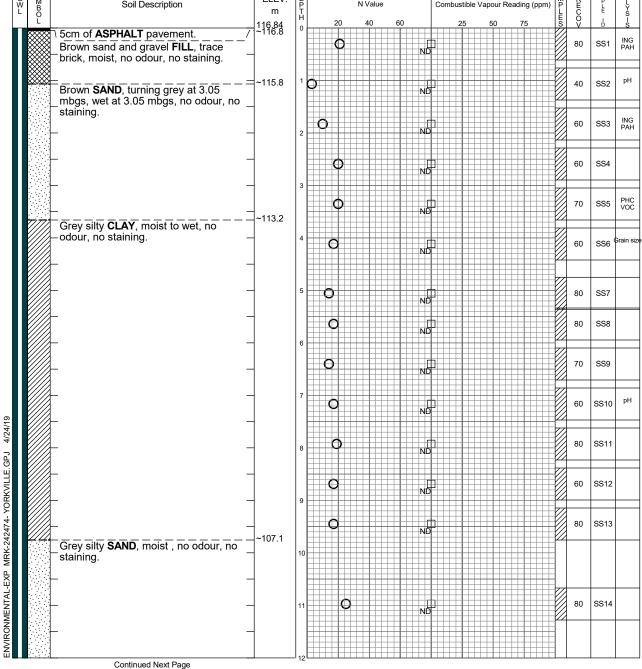
							Off-Site						
					ELEVATION				DISTANCE TO SITE	WATER FOUND			
BORE_HOLE_	WELL_ID	DATE	EAST83	NORTH83	(m ASL)	LOCATION ACCURACY	STREET	CITY	CENTROID (m)	(m BGS)	1st USE	2nd USE	FINAL STATUS
1004169555	7188417	7/30/2012	629998	4836594	115.2	margin of error : 30 m - 100 m			90				
1004197788	7188812			4836510	115.4	margin of error : 30 m - 100 m			463				
1004241305	7195731	12/3/2012	630075	4836213	112.0	margin of error : 30 m - 100 m			455				
1004265722	7198968	1/14/2013		4836751	116.0	margin of error : 30 m - 100 m			109				
1004313286		12/11/2012		4836975	110.9	margin of error : 30 m - 100 m			336				
1004469373	7205566	6/21/2013		4836826	114.6	margin of error : 30 m - 100 m			192				
1004600979	7209363	2/25/2013		4836832	114.4	margin of error : 30 m - 100 m			209				
1004722030	7217869			4836820	114.7	margin of error : 30 m - 100 m			186				
1005084241	7225756			4836481 4836497	115.5 115.9	margin of error : 30 m - 100 m			415 419				
1005263798		12/3/2014		4836497	113.6	margin of error : 30 m - 100 m			367				
1005265882 1005284034		12/13/2014 7/18/2012		4836299	115.8	margin of error : 30 m - 100 m margin of error : 30 m - 100 m			367				
1005284034	7241596	3/6/2012		4836457	115.0	margin of error : 30 m - 100 m			449				
1005561741	7247588	4/22/2015		4836815	114.8	margin of error : 30 m - 100 m			181				
1006028571	7263987	5/10/2016		4836497	114.0	margin of error : 30 m - 100 m			419				
1006068043	7265365	5/10/2010	629596	4836528	115.8	margin of error : 30 m - 100 m			346				
1006068046	7265366		629570	4836608	115.5	margin of error : 100 m - 300 m			354				
1006140852		10/10/2014		4836443	114.5	margin of error : 30 m - 100 m			498				
1006176898	7267060	., ., .		4836541	115.6	margin of error : 30 m - 100 m			477				
1006243599	7271427	8/29/2016		4836605	115.1	margin of error : 30 m - 100 m			41				
1006278819	7273992	-,,	629880	4836628	115.3	margin of error : 30 m - 100 m			44				
1006301262		4/11/2016		4836631	116.4	margin of error : 30 m - 100 m			260				
1006319993		11/17/2016		4836725	116.1	margin of error : 30 m - 100 m	45 SCOLLARD STREET	Toronto	174		Monitoring and Test Hole		Monitoring and Test Hole
1006322374		11/10/2016		4836758	116.2	margin of error : 30 m - 100 m	58 SCOLLARD STREET	Toronto	201		Monitoring and Test Hole		Monitoring and Test Hole
1006324933	7278273	11/29/2016	629748	4836541	116.2	margin of error : 30 m - 100 m	94 CUMBERLAND STREET	Toronto	201	12.3	Dewatering		Observation Wells
1006358243	7281893	1/20/2017	629750	4836757	116.3	margin of error : 30 m - 100 m	58 SCOLLARD STREET	Toronto	207	3.6	Test Hole		Monitoring and Test Hole
1006358246	7281894	1/20/2017	629742	4836783	116.4	margin of error : 30 m - 100 m	58 SCOLLARD ST	Toronto	229		Test Hole		Monitoring and Test Hole
1006358249	7281895	1/20/2017	629744	4836773	116.4	margin of error : 30 m - 100 m	58 SCOLLARD ST	Toronto	221		Test Hole		Monitoring and Test Hole
1006375983	7284074	3/1/2016	630429	4836507	114.3	margin of error : 30 m - 100 m	625 CHURCH ST	Toronto	524		Monitoring		Observation Wells
1006395070	7285830	3/13/2017	629574	4836609	116.1	margin of error : 30 m - 100 m	102 YORKVILLE AVE	Toronto	350	11.6	Test Hole		Test Hole
1006673977	7291677	6/29/2017	629761	4836185	112.7	margin of error : 10 - 30 m	70 ST. MARY STREET	Toronto	484		Monitoring		Observation Wells
1006676159	7291694			4836163	112.5	margin of error : 30 m - 100 m	70 ST. MARY STREET	Toronto	504		Monitoring		Observation Wells
1006728672	7294826			4836575	114.9	margin of error : 30 m - 100 m	28 CUMBERLAND STREET	Toronto	67		Monitoring		Observation Wells
1006319996		11/17/2016		4836745	116.0	margin of error : 30 m - 100 m	45 SCOLLARD STREET	Toronto	159				
1006372658		2/27/2017		4836499	115.9	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	194				Observation Wells
1006372661	7283915			4836498	115.8	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	191				Observation Wells
1006372664	7283916			4836495	115.8	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	194				Observation Wells
1006372667	7283917			4836497	115.8	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	191				Observation Wells
1006372670	7283918			4836498	115.8	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	187				Observation Wells
1006372673	7283919	2/27/2017		4836492	115.8	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	195				Observation Wells
1006372676	7283920	2/27/2017		4836491	115.8	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	192				Observation Wells
1006372679		2/27/2017		4836495	115.8	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	190				Observation Wells
1006372682	7283922			4836499	115.9	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	185				Observation Wells
1006372685	7283923	2/27/2017		4836484 4836598	115.7	margin of error : 30 m - 100 m	1200 BAY ST	Toronto	195 44	1.1			Observation Wells
1006719679 1006721151	7294297 7294298	8/14/2017 6/14/2017		4836598	115.0 115.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	30 CUMBERLAND STREET 30 CUMBERLAND STREET	TORONTO TORONTO		1.1 3.6			Observation Wells Observation Wells
1006721151 1006746951	7294298			4836594	115.0 116.4	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	48 SCOLLAND DRIVE	Toronto	220	3.0			Abandoned-Other
1006746951		8/22/2017		4836770	115.9	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	46 SCULLAND DRIVE	roronto	110				Abanuoneu-ourier
1006339257	7283885	., .,		4836556	113.5	margin of error : 30 m - 100 m margin of error : 30 m - 100 m			218				
1006372198					113.5 113.4	margin of error : 30 m - 100 m margin of error : 30 m - 100 m			218 237				

EXP Services Inc.

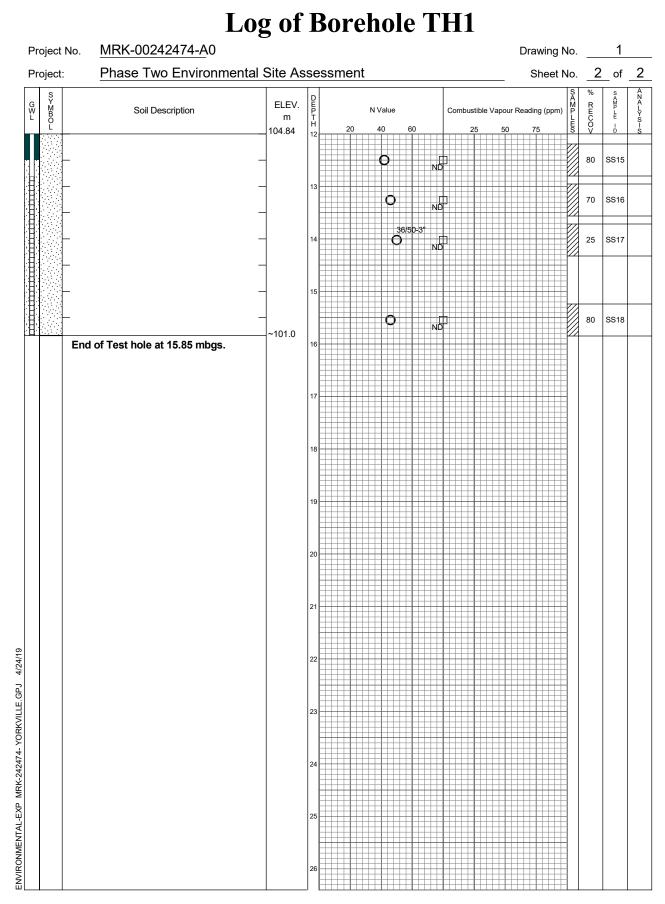
Project Number: MRK-00242474-A0 Date: Updated July 25, 2019

Appendix B – Borehole Logs

Notes On Sample Descriptions


1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by exp also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

					ISSN	<u>1FE SC</u>	DIL C	LASS	<u>IFICAT</u>	ION					
CLAY		SILT				SAND					GRAVEL			COBBLES	BOULDERS
	FINE	MEDIUM	COA	RSE	FINE	MEDIUM		COARSE	FINE		MEDIUM	COAR	SE		
		0.0			0.6		2.0	.0 6.0 20 60) 20	00			
			EC	QUIVA	LENT	GRAIN	1 DIA	AMETE	ER IN N	/ILL	IMETEF	RS			
CLAY (F	PLAST	IC) TO			FINE		ME	DIUM	CRS	F	INE	COA E	RS		
SILT (N	ONPLA	ASTIC					SA	ND			GRA	VEL			


UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Project	No.	MRK-00242474-A0					Drawing No.		1	
Project	t:	Phase Two Environmenta	al Site As	sessm	ent		Sheet No.	_1_	of	2
Locatio	on:	Yorkville Avenue and Cu	mberland	Street	, Toronto, Ontari	0				
Date D Drill Ty Datum:	vpe:	January 25 & 26, 2018 CME-55 Track, HSA Benchmark CT828		- Chemic - BTEX ING - MET - PAH - PEST	al Analysis Benzene, Toluene, Ethylt Metals and Inorganics Metals Polycyclic Aromatic Hydrr Organochlorine Pesticide	PCB PHC pcarbons VOC	Polychlorinat Petroleum H	, drocarb	enyls ons (,
G Y W B		Soil Description	ELEV.	DEP	N Value	Combustible Vapour I	Reading (ppm)	% R	SAMPL	A N A L Y

Time	Water Level (m)	Depth to Cave (m)
January 29, 2018 January 31, 2018 February 5, 2018 January 14, 2019	Dry Dry Dry Dry Dry	

Time	Water Level (m)	Depth to Cave (m)
January 29, 2018	Drý	
January 31, 2018	Dry	
February 5, 2018	Dry	
January 14, 2019	Dry	

Log of Borehole TH2				
MRK-00242474-A0	Drawing No.		2	
Phase Two Environmental Site Assessment	Sheet No.	1	of	1
Yorkville Avenue and Cumberland Street, Toronto, Ontario				

January 26, 2018 Date Drilled: Drill Type: CME-45 Truck, HSA Benchmark CT828 Datum:

Soil Description

Project No.

Project: Location:

ENVIRONMENTAL-EXP MRK-242474- YORKVILLE.GPJ 4/24/19

Chemical Analysis

N Value

ELEV.

m

BTEX	Benzene, Toluene, Ethylbenzene and	Xylenes
ING	Metals and Inorganics	PCB
MET	Metals	PHC
PAH	Polycyclic Aromatic Hydrocarbons	VOC
PEST	Organochlorine Pesticides	

Duplicate Sample Polychlorinated Biphenyls

NP

Combustible Vapour Reading (ppm)

Petroleum Hydrocarbons (F1-F4)

NALYS

F

Volatile Organic Compounds

SYMBOL DEPTH G W L RECOV 116.89 ~116.8 0 5cm of ASPHALT pavement. PAH* 0 80 SS1 Brown sand and gravel FILL, trace ND brick, moist, no odour, no staining. ING* 0 70 SS2 ND ~115.2 Light brown **SAND**, turning grey at 2.43 mbgs, wet at 2.43 mbgs, no odour, no staining. 0 80 SS3 ND O 70 SS4 ~113.8 3 PHC VOC SS5 Ο 60 ND 0 SS6 80 ~112.3 Grey silty **CLAY**, moist to wet, no odour, no staining. 5 0 80 SS7 ND 70 SS8 Ø ND ~110.9 End of Test hole at 5.94 mbgs.

(111)

Project No.	MRK-00242474-A0							0	Drawing No.	_		3	
Project:	Phase Two Environmenta	l Site As	se	ssme	ent				Sheet No.		<u>1</u> a	of _	1
Location:	Yorkville Avenue and Cun	nberland	S	treet,	Toront	o, Ontar	io						
Date Drilled: Drill Type: Datum:	January 29, 2018 CME-55 Track, HSA Benchmark CT828		-	BTEX ING MET PAH	Metals an Metals Polycyclic	Toluene, Ethy d Inorganics Aromatic Hyd	rocarbons	Xylenes PCB PHC VOC	* Dup Polychlorin: Petroleum Volatile Org	ated E Hydro	carbo	nyls ns (F	
GWL SYMBOL	Soil Description	ELEV. m	DEPTH	PEST	N Valu	e 60	combustible	Vapour Re	eading (ppm)	% RECO	SAN P LE		A N A L Y S -

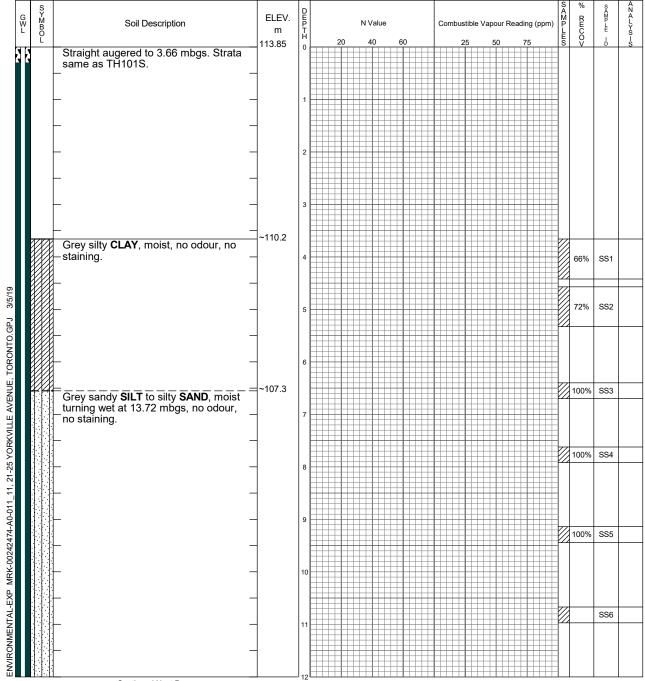
S S W M V B - O	ELEV. m	D E N Value T H 20 40	Combustible Vapour Reading (ppm) 60 25 50 75	SAMPLES	% RECOV	SAMP LE -
5cm of ASPHALT pavement. Brown sand and gravel FILL , trace brick, moist, no odour, no staining.			60 25 50 75			SS1
Light brown SAND , turning grey at 2.89 mbgs, wet at 3.20 mbgs, no odour, no staining.			NO		80	SS2
	_	2	ND		70	SS3
	~113.3	O	NO		90	SS4
	~112.4	O	ND		90	SS5
Grey silty CLAY, moist to wet, no odour, no staining.			ND		80	SS6 V
	_	5 0			70	SS7
End of Test hole at 5.94 mbgs.	~110.3	6	ND		80	SS8

Time	Water Level (m)	Depth to Cave (m)
January 29, 2018 January 31, 2018 January 14, 2019	3.19 3.22 2.96	

			Log	g of	ŀ	Bor	eł	10	le [ΓF	I 4	I						
Pı	roject	No.	MRK-00242474-A0											Drawing N	No.		4	
Pı	roject:		Phase Two Environmental	Site As	se	essme	nt						_	Sheet N	١o.	_1	_ of	1
Lo	ocatior	ו:	Yorkville Avenue and Cum	berland	S	treet,	Tor	onte	o, Ont	tario								
					_													
D	ate Dr	illed:	January 29, 2018		_	Chemica BTEX			Toluene, I	Ethylbe	nzene	and Xy	enes	* 1	Dupli	cate S	ample	
Drill Type: CME-55 Track, HSA				_	ING MET	Meta Meta		d Inorgani	cs			PCB PHC	Polychlo Petrolei					
D	atum:	m: Benchmark CT828			_	PAH	Poly	cyclic	Aromatic	•	arbons		VOC		um Hydrocarbons (F1-F4) Organic Compounds			
	1 - 1			1	I	PEST	Orga	nochl	orine Pest	licides					ISI	%		
G W L	S Y B O L		Soil Description	ELEV. m	DEPTH	20		Value 40	60	с	ombusi 2:	tible Vaj 5	oour R 50	Reading (ppm) 75	0AMP-LES	RECOV	SAMPLE -D	KZALYS-9
		Brow	of ASPHALT pavement/ n sand and gravel FILL , trace , moist, no odour, no staining	116.20 ~116.1	0	0										80	SS1	ING PAH
		3.05 3.20	brown SAND , turning grey at mbgs, cobble encountered at mbgs, wet at 3.05 mbgs, no	_~115.4	1	0				ND						90	SS2	
		-odou -	r, no staining	_	2	0										90	SS3	
		_	-	~113.2		(>			ND						80	SS4	ING PAH
		_	-	_	3		0			ND						80	SS5	PHC VOC
			silty CLAY , moist to wet, no	_~112.2	4	0										90	SS6	
		_	-	-	5	c)									90	SS7	
		_		~110.3		¢	>			ND						80	SS8	
		End	of Test hole at 5.94 mbgs.		6													

8

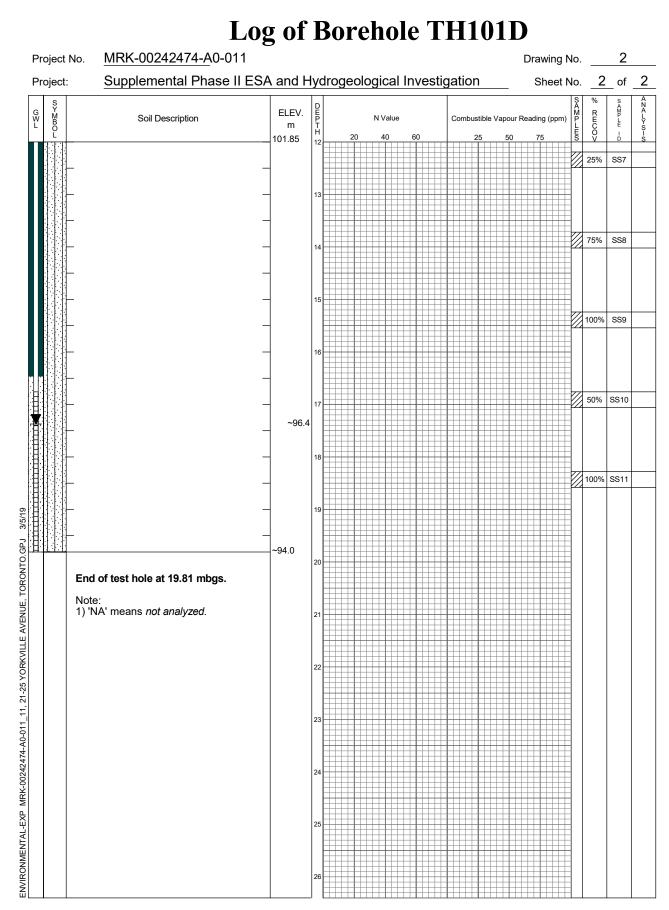
9


10

11

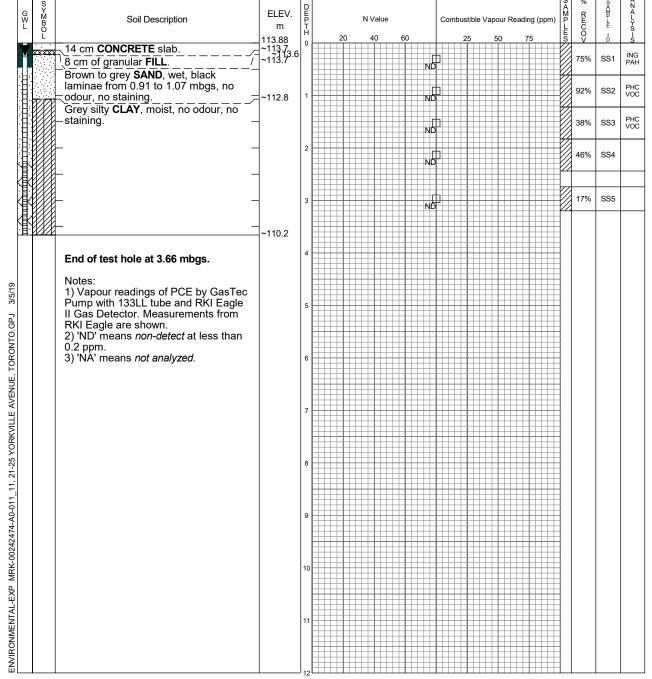
4/24/19	
MRK-242474- YORKVILLE.GPJ	
ENVIRONMENTAL-EXP MRM	

Time	Water Level (m)	Depth to Cave (m)
January 29, 2018 January 31, 2018 January 14, 2019	3.23 3.25 2.98	


	Log of I	Bor	ehole TH10	1D				
Project No.	MRK-00242474-A0-011			[Drawing No.		2	
Project:	Supplemental Phase II ESA and Hy	droge	ological Investigation		Sheet No.	_1	_of	2
Location: 11-25 Yorkville Avenue, Toronto, Ontario								
	21 Yorkville Avenue, NW portion of	basen	nent, 1 m S of TH101S					
Date Drilled:	November 14 to 15, 2018	Chemica BTEX	I Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Dupl	icate Sa	ample	
Drill Type:	Hilti	ING	Metals and Inorganics	PCB		ted Biphenyls		
Datum:	City of Toronto BM# CT828	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum H Volatile Org	,		· ·

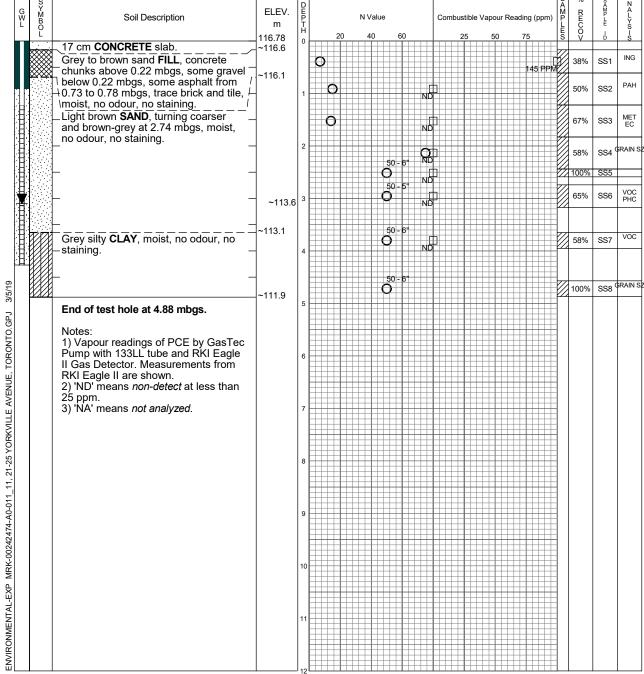
Continued Next Page

Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	17.408 17.538	

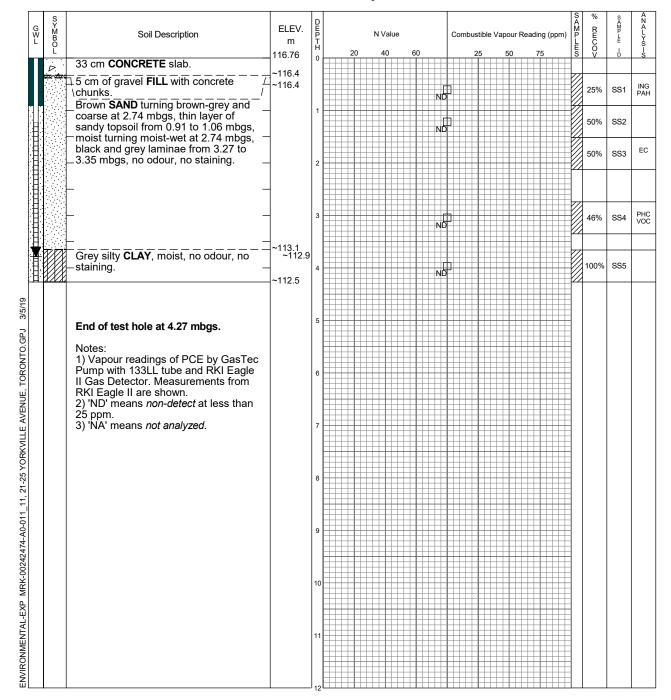

Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	17.408 17.538	

Project	No.	MRK-00242474-A0-011	-													Dra	win	ıg N	lo.		1	
Project	:	Supplemental Phase II ES	A and	Hy	dro	geol	og	ica	al I	nv	estig	atic	on		_	s	hee	et N	lo.	1	_ of	_1
ocatio	n:	11-25 Yorkville Avenue, To	oronto	, Oi	ntar	io																
		21 Yorkville Avenue, NW p	oortion	of	bas	eme	ent	t, 1	m	۱N	of T	H1	01	D								
Date D	rilled:	November 6, 2018				mical /	Anal	ysis			e, Ethyl				lonos		*	г	Juni	cate S	amnle	
Drill Ty	pe:	Hilti			ING			als ar				JEIIZEI	ne ai		PCB			/chlo	rinat	ted Bip	henyls	
Datum:		City of Toronto BM# CT82	8		ME1 PAF PES			cyclic			ic Hydr esticide		ons		PHC VOC					ydroca anic Co		
SY MB			ELE	/. EP	1														S A M P	%	S A MP	A
MBOL		Soil Description		T H		20	Ν	l Valu 40	le	60		Comb	ustib 25	le Va	pour F 50	Readir 7		pm)	PLES	RECOV	PLE	NAL YS-
		n CONCRETE slab. of granular FILL .	~113.6	1															Ø	71%	SS1	IN P/
		SAND, wet, no odour, no	_~113.0							1	.2 PPN	1								88%	SS2	PA
	Grey	silty CLAY , moist, faint	=~112.8	1							NĎ											
		s, no staining.									ND									13%	SS3	
	_			2							ND]								100%	SS4	V
	_	· · · · · · · · · · · · · · · · · · ·	-	3							ND]								83%	SS5	
	End	of test hole at 3.66 mbgs.		4																		
	Note	_																				
	Pum	apour readings of PCE by GasTec p with 133LL tube and RKI Eagle		5																		
	ll Ga	s Detector. Measurements of are shown.																				
	2) 'NI 0.2 p	D' means <i>non-detect</i> at less than																				
		A' means <i>not analyzed</i> .		6																		
				7																		
				ľ																		
				8																		
				9																		
				10) 																	
				1.																		
				1'	'Ħ																	
					Ħ																	

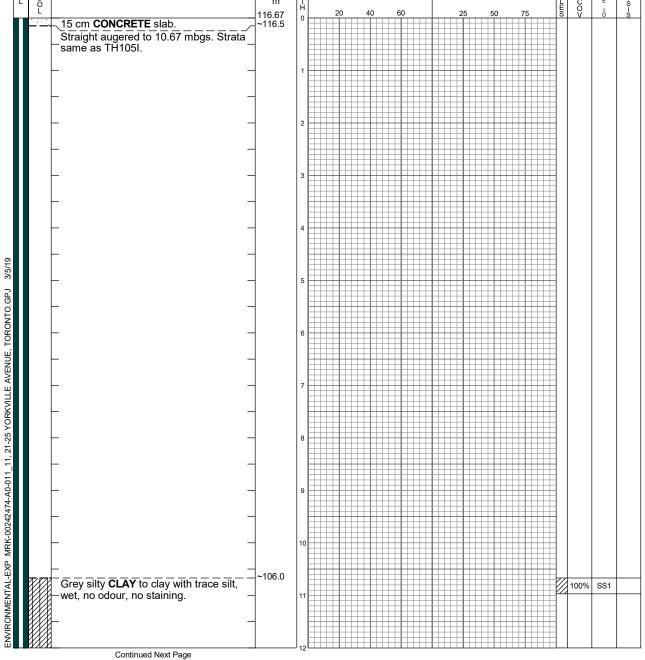
Time	Water Level (m)	Depth to Cave (m)
November 9, 2018 January 14, 2019	0.335 0.302	

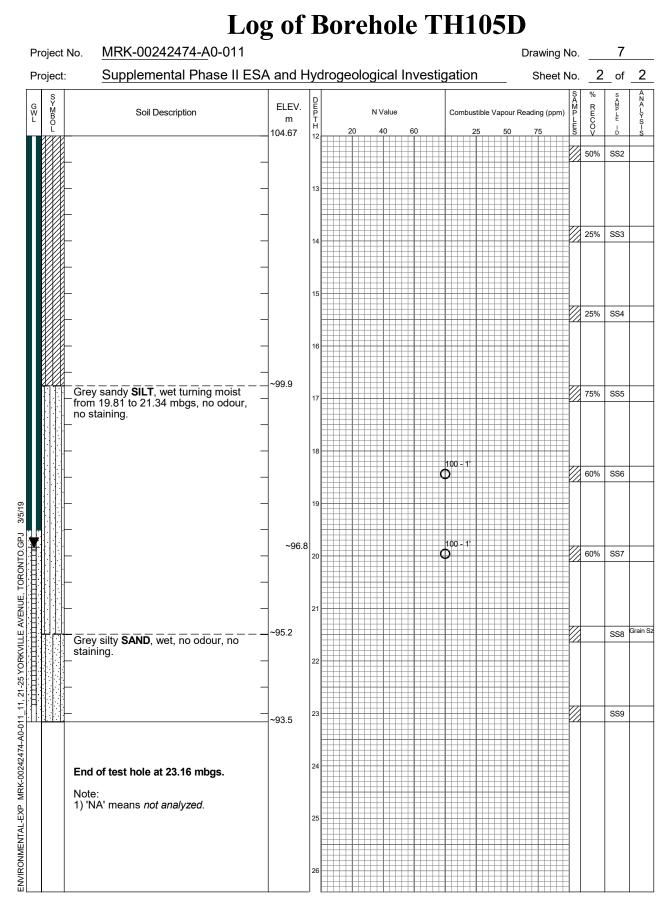

Project No.	MRK-00242474-A0-011			Drawing No.		3				
Project:	Supplemental Phase II ESA and H	Hydroge	ological Investigation		Sheet No.	1	of	1		
Location:	11-25 Yorkville Avenue, Toronto, Ontario									
21 Yorkville Avenue, NE portion of basement										
Date Drilled:	November 6 to 7, 2018	Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sar	nple			
Drill Type:	Hilti	ING	Metals and Inorganics	PCB	Polychlorinate	ed Biph	enyls			
		- MET	Metals	PHC	Petroleum Hy	drocart	oons (F1-F4)		
Datum:	City of Toronto BM# CT828	PAH	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Orga	npoun	ds			
		PEST	Organochlorine Pesticides							
					0	0/		Δ.		

Time	Water Level (m)	Depth to Cave (m)
November 14, 2018 January 14, 2019	0.267 0.252	


	Log	g of	Bor	ehole T	H103				
Project No.	MRK-00242474-A0-011	-				Drawing No.		4	
Project:	Supplemental Phase II ESA	and H	lydroge	ological Investi	gation	Sheet No.	1	of	1
Location:	11-25 Yorkville Avenue, Tor	ronto, (Ontario						
	21 Yorkville Avenue, west-c	entral	portion	of ground floor					
Date Drilled:	November 5, 2018		Chemica _ BTEX	al Analysis Benzene, Toluene, Eth	ylbenzene and Xylene	es * Dup	licate Sa	Imple	
Drill Type:	Hilti		ING - MET	Metals and Inorganics Metals	PCE PH	,	•	-	E1 E4)
Datum:	City of Toronto BM# CT828		PAH PEST	Polycyclic Aromatic Hyd Organochlorine Pesticic	drocarbons VO		-	`	
s						S	%	S	AN
G Y W M	Soil Description	ELEV.	DEP	N Value	Combustible Vapour	Reading (ppm)	P	S A P	AL

Time	Water Level (m)	Depth to Cave (m)
November 7, 2018	3.208	. ,
November 30, 2018	3.179	
December 11, 2018	3.134	
January 14, 2019	2.966	
-		


	0							
Project No.	<u>MRK-00242474-A</u> 0-011				Drawing No.		5	
Project:	st: Supplemental Phase II ESA and Hydrogeological Investigation					_1	of	1
Location:	11-25 Yorkville Avenue, Toronto, O	ntario						
	21 Yorkville Avenue, southeast port	ion of	ground floor					
Date Drilled:	November 5 to 6, 2018	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	ate San	nple	
Drill Type:	Hilti	ING	Metals and Inorganics	PCB	Polychlorinate	•		
		MET	Metals	PHC	Petroleum Hy	drocarb	ons (F	F1-F4)
Datum:	City of Toronto BM# CT828	PAH PEST	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Orga	nic Com	pound	ds



Time	Water Level (m)	Depth to Cave (m)
November 9, 2018 January 14, 2019	3.821 3.782	

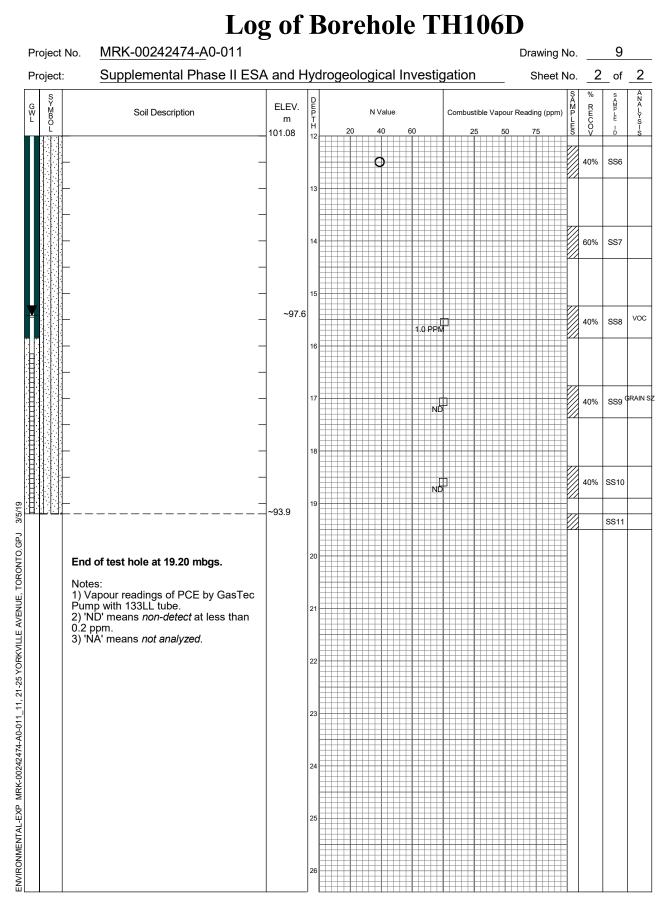
		Log	g of	F	Bor	rehol	e T	H10	5E)				
Proj	ect No.	MRK-00242474-A0-011								Drawing	No.		7	
Proj	ect:	Supplemental Phase II ESA	A and H	lyc	droge	ological I	nvesti	gation		Sheet	No.	_1	of	2
Loca	ation:	11-25 Yorkville Avenue, To	ronto, C	Dr	itario									
		21 Yorkville Avenue, south	west po	orti	ion of	ground f	loor, 1	m E of	TH1	05I				
Date	e Drilled:	November 21 and 26, 2018		_	Chemica BTEX	Il Analysis Benzene, To	oluene, Ethy	lbenzene and	l Xylenes	*	Dupli	cate Sa	ample	
Drill	Type:	Hilti		_	ING	Metals and Ir			PCB	Polych		ted Bipł	,	
Datu	um:	City of Toronto BM# CT828	8	-	MET PAH PEST	Metals Polycyclic An Organochlori			PHC VOC			lydrocar anic Cor	`	, ,
G W L	S Y B O L	Soil Description	ELEV. m	DEPTH	2	N Value	60	Combustible	Vapour I	Reading (ppm)	SAMPLES	% RECOV	SAMP LE -D	A N A L Y S - c

Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	19.873 19.882	

Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	19.873 19.882	

	Log	g of	ŀ	30]	re	h	0	le T	H10)5	I					
Project No.	MRK-00242474-A0-011										D	rawing N	۱o.		6	
Project:	Supplemental Phase II ESA	A and H	ły	droge	eolo	gio	cal	Investig	ation		-	Sheet N	۱o.	_1	_ of	1
Location:	11-25 Yorkville Avenue, To	ronto, (Эr	ntario)											
	21 Yorkville Avenue, south	west po	ort		-			floor, 1	m W of	fΤ	H10	5D				
Date Drilled:	November 20-21, 2018		_	Chemi BTEX		-		Γoluene, Ethyl	penzene and	l Xyle	enes	* 1	Dupl	icate S	ample	
Drill Type:	Hilti		_	ING MET		etals etals		Inorganics			PCB PHC	Polychlo Petroleu			,	
Datum:	City of Toronto BM# CT828		-	PAH PEST	Po	lycy	clic	Aromatic Hydr orine Pesticide			VOC	Volatile				•
SYMBO.	Soil Description	ELEV. m	DUPTI			NV	alue		Combustible	Vap	our Rea	ding (ppm)	SAMPLES	% RECOV	SAMP LE -	ANALYS-
	m CONCRETE slab.	116.67 ~116.5	0		20	4	0	60	25		50	75	ŝ	Ŭ.	b	Ś
trace	of sand and gravel FILL lying 8 cm of brown sandy FILL , s silt, moist, no odour, no staining.	~116.4 ~116.3						0 PPM						75% 75%	SS1 SS2	PAH ING
stain	k GRAVEL , no odour, no ing		1					0.1 РРЙ						88%	SS3	
2.36	s, coarse sand seam from 2.29 to mbgs, trace gravel, peat and at 2.59 mbgs, moist turning wet	-	2					0.2 PPM						88%	SS4	
at 3.	05 mbgs, no odour, no staining. –	-						0.2 PPM	1					38%	SS5	
Grey	v clayey SILT, wet, no odour, no	~113.5	3					0.1 PPM						38%	SS6	PHC
Grey Stain	silty CLAY, moist, no odour, no	~113.0	4					0.8 PPN						88%	SS7	100
		-						0.2 PPM								
J 3/5/19	-	~111.6	5					0.2 PPM]					20%	SS8	
E from	v clayey SILT , wet turning moist 7.62 mbgs to 9.14 mbgs, no ır, no staining.	~111.3						0.3 PPM]					100%	SS9	
е токо			6													
	-	-	7													
11.21-25 YORKVILLE AVE	-	-														
21-25 V	-	-	8					0.1 PPM	3					80%	SS10	
	-	-														
2474-A0	-		9]					25%	SS11	
RK-002	-	~106.6	10					0 PPM								
[≥] [⊥] X	of test hole at 10.06 mbgs.															
Mini II Ga	apour readings of total VOCs by RAE LITE PID-116 and RKI Eagle as Detector. Measurements from		11													
₩ PID 2) 'N	are shown. A' means <i>not analyzed</i> .															

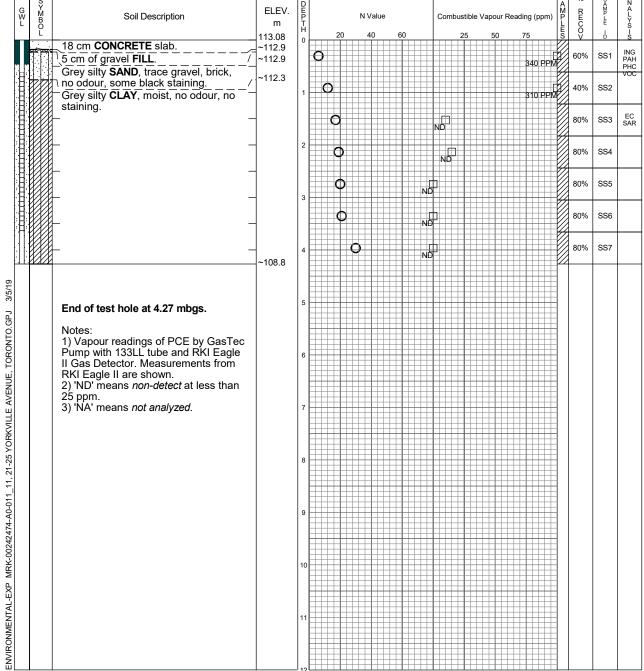
	brick at 2.59 mbgs, moist turning wet at 3.05 mbgs, no odour, no staining.			E		0.2 PPM	88%	SS4	
			3			0.1 PPM	38%	SS5	
	Grey clayey SILT , wet, no odour, no	~113.5				0.8 PPM	38%	SS6	PHC VOC
	Grey silty CLAY , moist, no odour, no – staining. –	-	4			0.2 PPM	88%	SS7	
Ţ		~111.6	5			0.2 PPM	20%	SS8	
	Grey clayey SILT , wet turning moist from 7.62 mbgs to 9.14 mbgs, no odour, no staining	~111.3	6			0.3 PPM	100%	SS9	
		-	7	,					
		-	8			0.1 PPM	80%	SS10	
		-	9	,					
						0 PPM	25%	SS11	
<u>i I</u>	End of test hole at 10.06 mbgs.	~106.6	10	0					
	Notes: 1) Vapour readings of total VOCs by Mini RAE LITE PID-116 and RKI Eagle II Gas Detector. Measurements from PID are shown. 2) 'NA' means <i>not analyzed</i> .		11	1					
·	1		-' 12	2			 		


Time	Water Level (m)	Depth to Cave (m)
November 30, 2018 January 14, 2019	5.053 7.769	

Log of Borehole TH106D

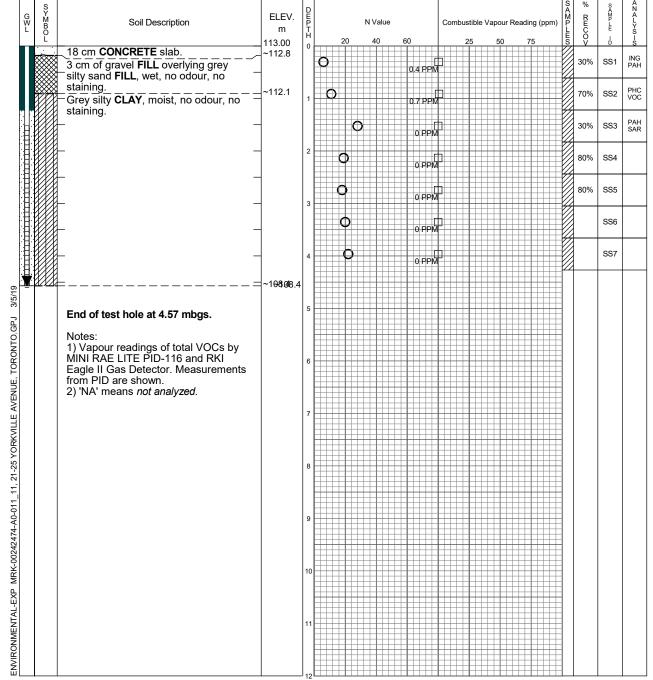
	0					
Project No.	<u>MRK-00242474-A</u> 0-011				Drawing No.	9
Project:	Supplemental Phase II ESA and	Hydroge	ological Investigation		Sheet No.	1_of_2_
Location:	11-25 Yorkville Avenue, Toronto,	Ontario				
	11 Yorkville Avenue, 2 m S of N-	<u>w</u> all, 3.6	m W of E-wall			
Date Drilled:	November 26 to 28, 2018	Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplica	ate Sample
Drill Type:	K40, track mounted	ING — MET	Metals and Inorganics Metals	PCB PHC	Polychlorinate Petroleum Hyd	d Biphenyls drocarbons (F1-F4)
Datum:	City of Toronto BM# CT828	PAH	Polycyclic Aromatic Hydrocarbons	VOC		ic Compounds

Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	15.453 16.168	

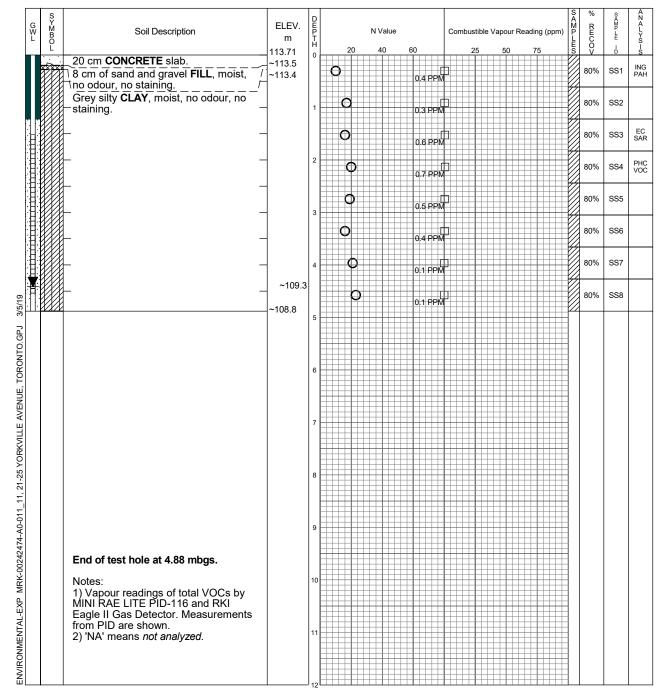


Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	15.453 16.168	

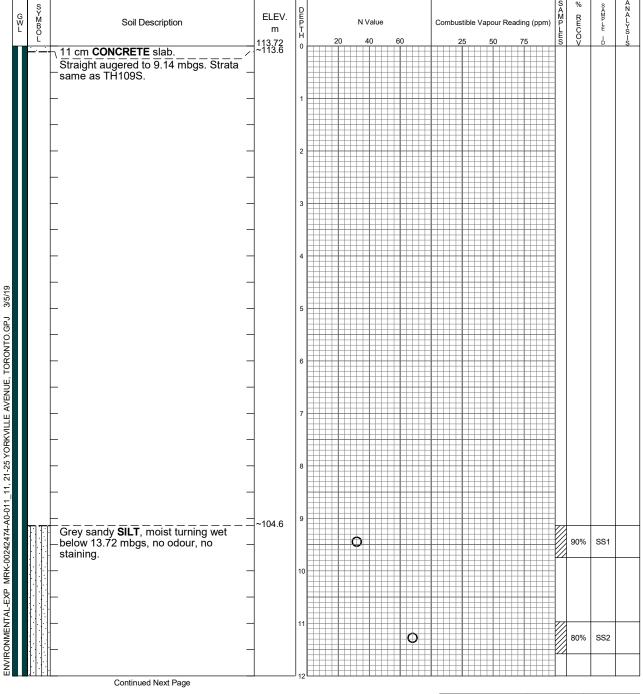
Log of Borehole TH106S

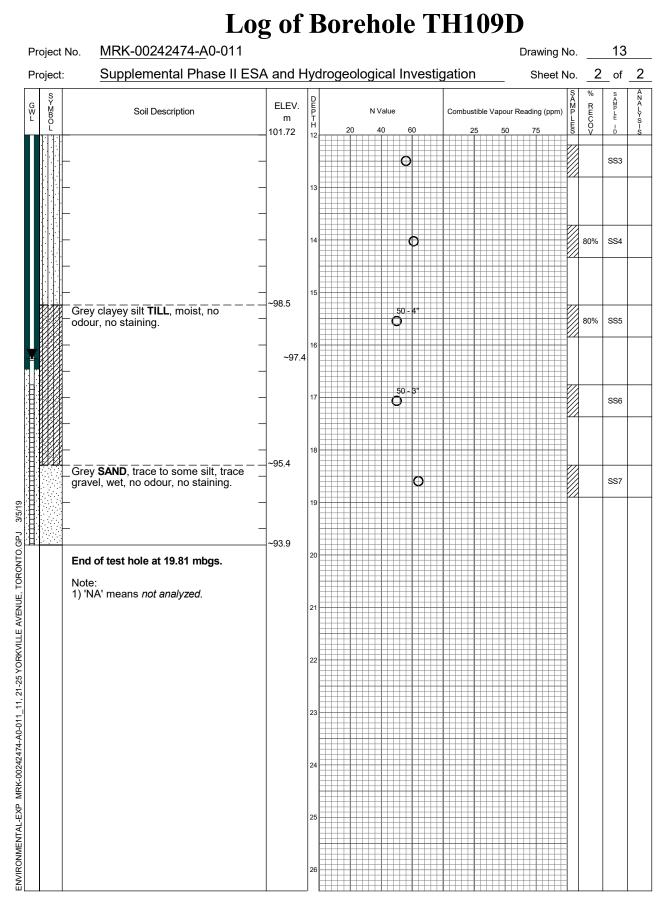

Project No.	MRK-00242474-A0-011		Drawing No.		8				
Project:	Supplemental Phase II ESA and	Hydr	oge	ological Investigation		Sheet No.	1	of	1
Location:	11-25 Yorkville Avenue, Toronto	, Onta	ario						
	<u>11 Yorkville Avenue, 2 m S of N</u>	-wall,	2.8	m W of E-wall					
Date Drilled:	November 23, 2018		hemica	I Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	imple	
Drill Type:	K40, track mounted		с , <u>,</u>	,	rinated Biphenyls m Hydrocarbons (F1-I				
Datum:	City of Toronto BM# CT828		AH EST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC				,
c Y		, <u>P</u>				SA	%	S A M	A N A

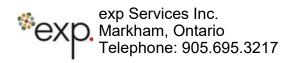
Time	Water Level (m)	Depth to Cave (m)
January 14, 2019	Drý	


	0						
Project No.	<u>MRK-00242474-A</u> 0-011				Drawing No.	10	
Project:	Supplemental Phase II ESA and	Hydroge	ological Investigation		Sheet No.	_1_ of _	1
Location:	11-25 Yorkville Avenue, Toronto	, Ontario					
	<u>11 Yorkville Avenue, 17.9 m S o</u>	<u>f N</u> -wall, :	2.7 m E of W-wall				
Date Drilled:	November 22, 2018	Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	ate Sample	
Drill Type:	K40, track mounted	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinat	ed Biphenyls /drocarbons (F	- 1-F4)
Datum:	City of Toronto BM# CT828	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	-	anic Compounds	

Time	Water Level (m)	Depth to Cave (m)
November 28, 2018	4.515	. ,
December 4, 2018	4.602	
January 14, 2019	4.408	

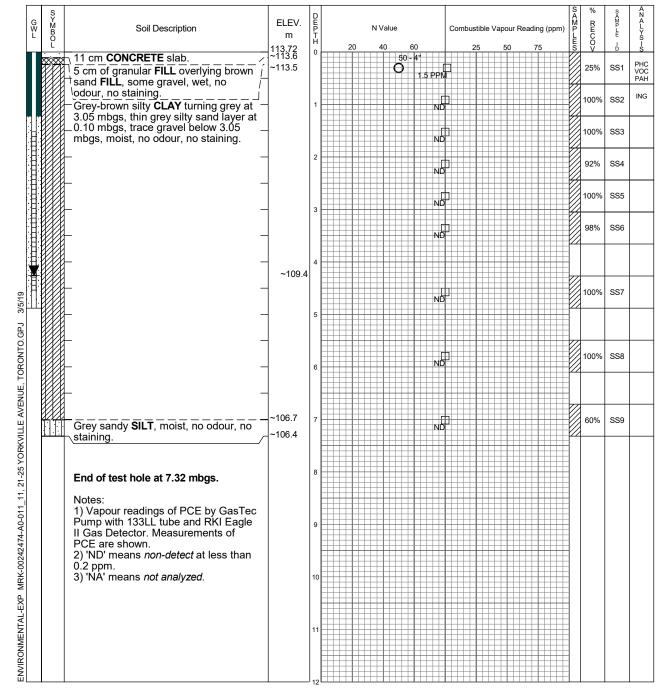

	0						
Project No.	<u>MRK-00242474-A</u> 0-011				Drawing No.	1	1
Project:	Supplemental Phase II ESA and	Hydroge	ological Investigation		Sheet No.	_1_ of	1
Location:	11-25 Yorkville Avenue, Toronto	, Ontario					
	<u>11 Yorkville Avenue, 16.5 m N o</u>	<u>f S</u> -wall, 2	2.8 m W of E-wall				
Date Drilled:	November 21, 2018	l Xylenes	* Duplic	ate Sample	•		
Drill Type:	K40, track mounted	ING — MET	Metals and Inorganics Metals	PCB PHC	Polychlorinate Petroleum Hy		
Datum:	City of Toronto BM# CT828	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga		` '


Time	Water Level (m)	Depth to Cave (m)
November 30, 2018 January 14, 2019	4.451 1.029	


Log of Borehole TH109D

	0					
Project No.	<u>MRK-00242474-A</u> 0-011				Drawing No.	13
Project:	Supplemental Phase II ESA and	Hydroge	ological Investigation		Sheet No.	_1_of_2_
Location:	11-25 Yorkville Avenue, Toronto,	Ontario				
	11 Yorkville Avenue, 2.7 m N of S	<u>S-</u> wall, 7	.7 m E of W-wall			
Date Drilled:	November 15 to 16, 2018	Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	s * Duplic	ate Sample
Drill Type:	K40, track mounted	ING — MET	ed Biphenyls drocarbons (F1-F4)			
Datum:	City of Toronto BM# CT828	PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	,	nic Compounds

Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	16.301 15.279	



Time	Water Level (m)	Depth to Cave (m)
December 11, 2018 January 14, 2019	16.301 15.279	

Log of Borehole TH109S

Project No.	<u>MRK-00242474-A</u> 0-011	IRK-00242474-A0-011							
Project:	Supplemental Phase II ESA and H	lydroge	ological Investigation		Sheet No.	_1_ of	1		
Location:	11-25 Yorkville Avenue, Toronto, 0	Ontario							
	<u>11 Yorkville Avenue, 1.7 m N of S</u>	-wall, 7.	7 m E of W-wall						
Date Drilled:	November 14, 2018	Chemica BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	ate Sample			
Drill Type:	K40, track mounted	ING MET	Metals and Inorganics Metals	PCB PHC	, , ,				
Datum:	City of Toronto BM# CT828	PAH PEST	Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Organ	`	,		

Time	Water Level (m)	Depth to Cave (m)
November 26, 2018 January 14, 2019	4.291 4.286	

RECORD OF BOREHOLE 1

: E4703

LOCATION : 19 Yorkville Avenue, Toronto, Ontario

STARTED : February 22, 2016

PROJECT

COMPLETED : February 24, 2016

щ Г	DOH.	SOIL PROFILE	- 1 ·		SAM		5 (r	opm)	no V/			ADINGS ⊗	SHE	na ren	t V -		u, K	Pa Q - X U - ▲	NGAL	D
I SC/	MET		PLOT		۲.			100	20		00	400 I		20	40 1	6		80 I	TION/	PIEZOMETE OR
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER		ismo	% LEL	(hexa	ane)					CONT	ENT,	PER	CENT H wl	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATIC
Ō	BOF		STR/	(m)	Ī			20	40) 6	60	80	\ *	10	20	3	0	40		
		GROUND SURFACE		116.64			þ													
		50 mm ASPHALT FILL:	-/ 🎆	110.05	2 /	SS 3 AS	68) 80													Flush Mount Cover
2		sand and gravel, trace of brick, coal, asphalt and concrete pieces, brown, moist, compact.		115.12 1.52	3 5		∍¢													
_		SILTY SAND: brown, moist, loose to compact.			4 5		986													
4		-wet below 3.05 m depth.		:	5 5	<u>55</u> 2	08													
		SILTY CLAY:		112.07 4.57	6 5	<u>SS</u> 1	38													
6		grey, moist, stiff to very stiff.			7 5	55 2	0													
							ĥ													Bentonite
8					8 3	<u>SS</u> 2	46													
					9 5	SS 1	0 4⊗													
10				105.97																
		SILTY CLAY TILL: trace of sand and gravel, grey moist, very stiff.		k	10 5															
12		SILTY SAND:	- /	104.45	11 5	<u>SS</u> 3	0 10€													$\overline{\Delta}$
		grey, wet, dense.			12 5															<u> </u>
14		SANDY SILT: grey, moist, very dense.		:																24.40 m Long 50 mm
16		SILTY SAND: grey, moist to wet, dense to very dense.		101.40	13 5	<u>SS</u> 3	98													Long 50 mm ID PVC Riser
10	ВNG				14 5	SS>1	0 0 0 0													
18	SING				$ \top$		h													
.0	BOR DI				15 5	<u>SS</u> 8	300													
20	POWER BORING ROTARY MUD DRILLING	CLAYEY SILT TILL:		96.83 19.81	16 5	<u>SS</u> 6	b ØØ													
	PO	trace of sand and gravel, grey, moist, hard.		1			b													04.00
22	×	-some sand below 21.3 m depth.		1	17 5															94.99 94.99 Silica Sand
		SILTY SAND:	_ r //	93.78 22.86	18 5	<u>SS</u> 5	0 4⊗													
24		grey, wet, very dense.			19 5															92.24
		SANDY SILT: grey, wet, very dense.		·																3.05 m Long
26		SILTY SAND:		90.73 25.91	20 5	<u>SS</u> 6	40													50 mm ID Well Screen
		grey, wet, very dense.			21 5	55 7	400													89.19
28							h													
					22 5															
30		SAND:		86.16	23 5	SS 6	6 6⊗9													Silica Sand
32		grey, wet, very dense.					b													
J2					24 (
34		CLAYEY SILT TILL:	- In	83.11 33.53	25 \$	SS>1	oœ													
		trace of sand, gravel and shale fragments, grey, moist, hard.		1	26 - 5	\$\$ -1	0000													
36							٦,													
		-tricone bit grinding below 36.9 m depth (possible		1	27 5	SS>1	0005													
38		shale bedrock). WEATHERED SHALE:	_HKH	78.54 78.40 38.15	28 (38 -1	р 0 0 0													78.49
		grey, moist. End of Borehole.	_	38.15																
40		Note:																		
		1) Water level was not measured on completion of drilling due to use of mud																		
42		2) Water level was measured at 13.0 m bgs on February 25, 2016.																		
		GROUNDWATER ELEVATI	ONS		•	!					1		1					1	1	L
		$\overline{\Sigma}$ SHALLOW/SINGLE INSTALLAT				FP/F	DUAL	INS	ΤΑΙ					1.01			Ver			
		WATER LEVEL (date)			VATE					- 11					GED CKEI		VSL JB			

MC CLYMONT & RAK ENGINEERS, INC.

SHEET 1 OF 1 DATUM Geodetic

			Lo	og of	Bo	ore	eho	le:	МИ	<i>V</i> 01		
			Pro	<i>ject #:</i> 1	109	54					Logged	By: B.B.
		D	INCHIN Pro	oject: Pha	ase	ΙE	nviror	nmer	ntal Si	te Assessi	ment	
		P		ent: King	Set	t Ca	pital					
			Loc	cation: 2	1-2	5 Yo	orkville	e Av	enue,	Toronto, C	ON	
		And And And	Dril	II Date: [Dece	emb	er 17	, 20 ⁻	15		Project	Manager: R.R.
			SUBSURFACE PROFILE							S	AMPLE	
Depth		Symbol	Description	Measured Depth (m)		Monitoring	Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration RKI/PID	Laboratory Analysis
oft	m - 0		Ground Surface	0.00								
1			Concrete	0.30	-	1	1		10	01	10/0	
2			Sand Fine to medium grained, moist,	0.61	ļ		Ľ	1	10	S1	10/0	
3 4 5	- 1 -		brown Trace oxidation from 0.6 to 1.8 mbgs		Riser		Bentonite	2	30	S2	10/0	рН
6 1 7 1 8 1 1 9	- 2		Grey-brown, coarse grained sand from 2.44 to 2.59 mbgs	2.44	-		Ber	3	90	S3	5/0	
10	- 3		Clay	3.05						S4	5/0	
11	- -	$\langle \rangle$	Trace silt, wet to saturated, grey, trace oxidation from 3.05 to 3.66	3.66	-		•	4	100	S5	5/0	VOCs
13	- 4		mbgs Moist				a Sand			S6	5/0	Grain Size
15 16	- 5				Screen 7		Silica	5	100	S7	0/0	
17					Scr					S8	0/0	
19 20	- 6			6.10	-			6	100	S9	10/0	VOCs
21 22 23 24 24 25	- 7		End of Borehole Soil Vapours measured using a photoionization detector (PID) and an RKI Eagle hydrocarbon surveyor.		mea 5.32 on [ter le asure 25 m Dece 2105	ed at bgs mber					
c	ont	racto	r: Strata Drilling Group	Pinchin	Ltd.			•	Gr	ade Eleva	tion: NM	
				Milltower	· Co	ourt			To	n of Caci	ng Elevatio	n: NM
		-	Mississa Mississa Mississa	uga, ON	Lt	5N 7	W5			eet: 1 of 1	•	

		Lo	g of	Boreho	ble	э:	МИ	/02		
		Proj	ject #: 1	10954					Logged	By: B.B.
	D	INCHIN Proj Clie	ject: Ph	ase II Enviro	onn	nen	tal Sit	e Assessr	nent	
	P		nt: King	Sett Capital						
		Loc	ation: 2	1-25 Yorkvi	lle /	Ave	nue,	Toronto, C	N	
		Dril	I Date: [December 1	7, 2	201	5		Project	Manager: R.R.
		SUBSURFACE PROFILE		1				S	AMPLE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	-	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration RKI/PID	Laboratory Analysis
$\begin{array}{c} ft m \\ 0 \pm 0 \end{array}$		Ground Surface	0.00							
1		Concrete	0.30			1	25	S1	0/1	
2		Sand Fine to medium grained, moist,	0.61	Riser		<u>'</u>	20		0/1	
3 4 4		brown	S2	15/0	Metals					
5		Trace oxidation from 0.6 to 1.2 mbgs	1.02		2	60	S3	5/1		
6 		Inace oxidation from 0.6 to 1.2 mbgs 1.83					S4	0/0		
8-		Coarse grained sand from 2.44 to	2.44			3	80			
9 <u>-</u> 103		2.59 mbgs	3.05					S5	0/0	
11		<i>Clay</i> Trace silt, wet to saturated, grey, trace oxidation from 3.05 to 3.66	3.66				100	S6	35/5	VOCs
12-1 13-4		mbgs				4	100	S7	25/0	
14 15		Moist						S8	5/0	
				Screen		5	100			
17			5.49	S S				S9	5/0	
19 19		End of Borehole								
206 216 22		Soil Vapours measured using a photoionization detector (PID) and an RKI Eagle hydrocarbon surveyor.		Water level measured at 3.254 mbgs on December 22, 2105.						
24										
Con	tracto	r: Strata Drilling Group	Pinchin	Ltd.	_	_	Gr	ade Eleva	tion: NM	
Drill	ing M	ethod: Direct Push	lilltower				То	p of Casiı	ng Elevatio	<i>n:</i> NM
Well	Casiı	ng Size: 2.54cm	uga, ON	L5N 7W5			Sh	eet: 1 of 1		

		Log	g of	Bore	eho	le:	МИ	/03					
		Proje	ect #: 1	10954					Logged	d By: B.B.			
	D	INCHIN Proje	ect: Ph	ase II E	nviror	nmer	ntal Si	te Assessr	ment				
		Clier	nt: King	Sett Ca	apital								
		Loca	tion: 2	1-25 Yo	orkville	e Ave	enue,	Toronto, C	ON				
			Date:	Decemb	per 17	, 20 1	15		-	Manager: R.R.			
		SUBSURFACE PROFILE	1	1				S	AMPLE				
Depth	Symbol	Description	Measured Depth (m)	Monitoring	Well Details	Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration RKI/PID	Laboratory Analysis			
ft m 0 + 0		Basement Surface	0.00		╤╷╴								
		Concrete Basement floor slab	0.30	1	1	1	50	S1	25/0				
2		Clay	0.61				50		23/0				
3 - 1		Trace silt, moist, grey		Riser	3entonite			S2	25/0	Metals			
ft m 0 1 1 1 2 3 4 1 5 6 7 8		Moist to wet	1.83		Bent	2	100	S3	25/0	VOCs, PHCs, pH, Grain Size			
	Wet				3	100	S4	5/0	PAHs				
9 10 10					•		100	S5	5/0				
11 12 12				Screen	Silica Sand	4	100	S6	0/0				
13 <u>+</u> 4 14 <u>+</u>					Silic			S7	0/0				
15 16 16 5	\square	End of Developing	4.88			5	50	S8	0/0				
17		End of Borehole											
18 19 20 21 21 22 23 23 24		Soil Vapours measured using a photoionization detector (PID) and an RKI Eagle hydrocarbon surveyor.		Monitori well was on Dece 22, 210	s dry ember								
25	racto	r: Strata Drilling Group	inchin	l td			Gr	ade Eleva	tion: NM				
		2470 Mi								ALL			
	-	ethod: Direct Push Mississau Mississau ng Size: 2.54cm	ga, ON	L5N 7	7W5			p of Casil neet: 1 of 1	ng Elevatio	on: NM			

			Lo	g of	Bo	ore	ho	le:	МИ	/04		
			Proj	iect #: 1	109	954					Logged	By: B.B.
		D	INCHIN Proj	ect: Ph	ase	ll En	viror	mer	ntal Sit	e Assessr	ment	
		r	Clie	<i>nt:</i> King	Set	t Cap	oital					
			Loc	ation: 2	1-2	5 Yoı	kville	e Ave	enue,	Toronto, C	N	
		- searcher		Date:	Dece	embe	er 18	, <mark>20</mark> 1	5		Project	Manager: R.R.
		1	SUBSURFACE PROFILE		1					S		
Denth		Symbol	Description	Measured Depth (m)		Monitoring		Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration RKI/PID	Laboratory Analysis
oft 0	m - 0		Basement Surface	0.00			т					
	-		Concrete Basement floor slab	0.30								
	-		Sand Fine to coarse grained, saturated,		Riser		Bentonite	1	40	S1	20/1	
3	- - 1		brown grey	1.22			ă	2	100	S2	15/1	Metals
5	- -		<i>Clay</i> Trace silt, moist to wet, grey	1.83			Sand 📥	2	100	S3	15/0	
6 1 7 1 8	- 2		Saturated		Screen 7		Silica S	3	100	S4	25/0	VOCs
8 1 9 10	- 3			3.05	Sc				100	S5	15/0	
11 12 13 14	- - - - 4		End of Borehole Soil Vapours measured using a photoionization detector (PID) and an RKI		mea 0.43	ter lev asurec 39 mb	d at gs					
			Eagle hydrocarbon surveyor. r: Strata Drilling Group F 2470 M		Ltd	ourt				ade Eleva p of Casil	ntion: NM ng Elevation	n: NM
V	Vell	Casir	Mississau ng Size: 2.54cm	iya, UN		JIN / 1	W J		Sh	eet: 1 of 1		

			Lo	g of	B	ore	ho	le:	МИ	<i>V05</i>					
			Proj	ect #: 1	10	954					Logged	By: B.B.			
		D	INCHIN Proj	ect: Ph	ase	e II Er	viror	mer	ntal Si	te Assessr	ment				
1	1			nt: King	jSe	ett Cap	oital								
			Loca	ation: <mark>2</mark>	21-2	25 Yo	rkville	e Ave	enue,	Toronto, C	ON				
			Drill	Date:	De	cembe	er 18	, 201	15		Project	<i>Manager:</i> R.R.			
			SUBSURFACE PROFILE)FILE						S	SAMPLE				
Depth		Symbol	Description	Measured Depth (m)		Monitoring		Sampler #	Recovery (%)	Sample ID	Soil Vapour Concentration RKI/PID	Laboratory Analysis			
ft n	า 0		Basement Surface	0.00		┢╤╤	Ŧ								
			Concrete Basement floor slab	0.30			1	4	75	S1	5/0				
2		\square	Clay	0.61	ſ			1	75	51	5/0				
m 0 1 2 3 4 5 6 7 8 9 10 10	1	\square	Trace silt, moist, grey		Riser		Bentonite			S2	5/0	VOCs			
		\square	Moist to wet				Bent	2	100	S3	0/0				
		\square									0/0				
	2	\bigcirc								S4	0/0				
8		\square						3	100						
9		\square								S5	0/0				
-	3					€									
11 12		\geq			Screen		Sand		100	S6	0/0				
	4			Ū,		Silica	4	100	S7	0/0					
	4	\square					S			- 57	0/0				
15		\square								S8	0/0				
16	5	\square						5	100						
17	Ŭ	\bigcirc		5.49						S9	0/0				
			End of Borehole	0.49			<u>.</u>								
	6														
20 21 22 22 23			Soil Vapours measured using a photoionization detector (PID) and an RKI Eagle hydrocarbon surveyor.		we on	onitorin ell was 1 Decer 2, 2105.	dry nber								
24 <u>-</u> 25 -															
						-1									
			2470 M	inchin illtowei					Gr	ade Eleva	ition: NM				
Dri	illir	ng Me	ethod: Direct Push Mississau				W5		То	p of Casi	ng Elevatio	<i>n:</i> NM			
We	e// (Casir	ng Size: 2.54cm		_				Sh	neet: 1 of 1	l				

	Geotechnical Environmental Materials Hydro	geolo	ogy		LOC	GΟ	F BC	RE	HO	LEE	3H1	5-3									1 (OF 1
PROJ	ECT: Environmental Soil & Groundwate	er Inv	estig	ation				D	RILL	ING D	ATA											
CLIEN	IT: Bazis Inc.							Ν	/lethoo	d: Holl	low St	em Au	ugers									
PROJ	ECT LOCATION: 11-17 Yorkville Avenu	ie, To	oront	o, Onta	ario			D	Diame	ter: 20)3mm						R	REF. NO	D.: 10	0001:	354-100	
DATU	M: Geodetic							D	Date:	Jan/24	4/201	5					E	NCL N	0.: 2			
BH LC	CATION: See Borehole Location Plan		_																	_		
	SOIL PROFILE		5	SAMPL	ES			D R) YNAM RESIST	IC COI ANCE	NE PEI PLOT		TION			NAT	URAI			Т	REMAR	RKS
(m)		⊢				GROUND WATER			20			i0 8	30 1	00	PLAST LIMIT	IC NAT MOIS CON	STURE	LIQUID LIMIT	Ľ.	NATURAL UNIT WT (Mg/m ³)	AND	
(m) ELEV		STRATA PLOT			BLOWS 0.3 m	AW 0	S N	s	SHEAI	R STF	RENG	I TH (kl	Pa)	1	W _P		w 0	WL	POCKET PEN. (Cu) (kPa)	AL UN	GRAIN S	
DEPTH	DESCRIPTION	ATA	BER		BLO 0.3		EVATION		O UN	CONFI	NED	+	FIELD V & Sensit	ivity	W/A	TER CO		JT (%)	POC DO	ATUR (N	(%)	
116.3		STR.	NUMBER	ТҮРЕ	ż	GRO		_ '	 QU 20 				LAB V/ 30 1	ANE 00			20	30		z	GR SA S	SI CL
110.0	CONCRETE: 100mm	$\overline{\mathbf{x}}$	1	SS				16									-					
	FILL: silty sand to sand, trace clay, trace brick fragments, brownish grey	\bigotimes																				
	to brown, moist to very moist, very	\bigotimes	2	SS	3																	
	loose to compact	\mathbb{X}	3	SS	5																	
114.0 2.3	FINE SAND: trace silt, brown to		1		40		1.	14											-			
2.0	grey, moist, compact		4	SS	12																	
112.8	wet below 3.1m		5	SS	10																	
3.5	SILTY CLAY trace sand, occasional seams of fine sand and silt, grey,	K																				
	moist, stiff to very stiff	K	1				1	12											1			
		Ĥ	6	SS	10																	
		12	1																			
		11	_		45		1.	10														
		12	7	SS	15			`														
		R	1																			
		K	8	SS	14																	
		K	Ľ	00			10	08-											-			
		Ĥ	1																			
		12	9	SS	12																	
		K	┢																			
105.9	SILT: trace sand, trace clay, grey,	<u>ffi</u> f	1				10	D6														
	wet, compact		10	SS	23																	
							1(04														
	some clay, moist below 12.2m		11	SS	59			74														
				00	70																	
			12	SS	72		10)2 -											-			
101.5	SANDY SILT: trace clay, grey, wet,	┝	-																			
14.0	dense		13	SS	58																	
			13	33	50																	
99.8			1				10	00-														
5 16.5	SILT: trace clay, grey, wet, very dense		14	SS	66	¥	\\/ I).4 m													
5			<u> </u>						2015													
98.3	SANDY SILT TO SILTY SAND:	$\left \right $	-					_														
	frequent clayey silt seams/layers,		15	SS	64			98-											1			
97.0	grey, wet, very dense																					
19.3	CLAYEY SILT TILL: some sand to sandy, trace gravel, grey, moist, hard	H	1	<u> </u>																		
j	canay, addo gravor, gray, molot, hald	FUH	16	SS	46			96						-			-	_	1			
			1			目																
94.7		ЦЦ				ĿΕ	÷.															
94.6	SANDY SILT: trace clay, grey, wet.	<u>fill</u>	17	SS	43			+									-	_	-			
99.8 99.8 16.5 98.3 18.0 97.0 19.3 94.7 94.6 21.9	dense																		1			
	Notes:		1																			
8	 50mm dia. monitoring well installed in the borehole upon 																					
	completion.		1																			
			1																1			
'L			L	I				3					e-3%	L		1	1		1	I		

GROUNDWATER ELEVATIONS

SPL Consultants Limited

Shallow/ Single Installation $\underline{\nabla}$ $\underline{\nabla}$ Deep/Dual Installation $\underline{\nabla}$ $\underline{\nabla}$

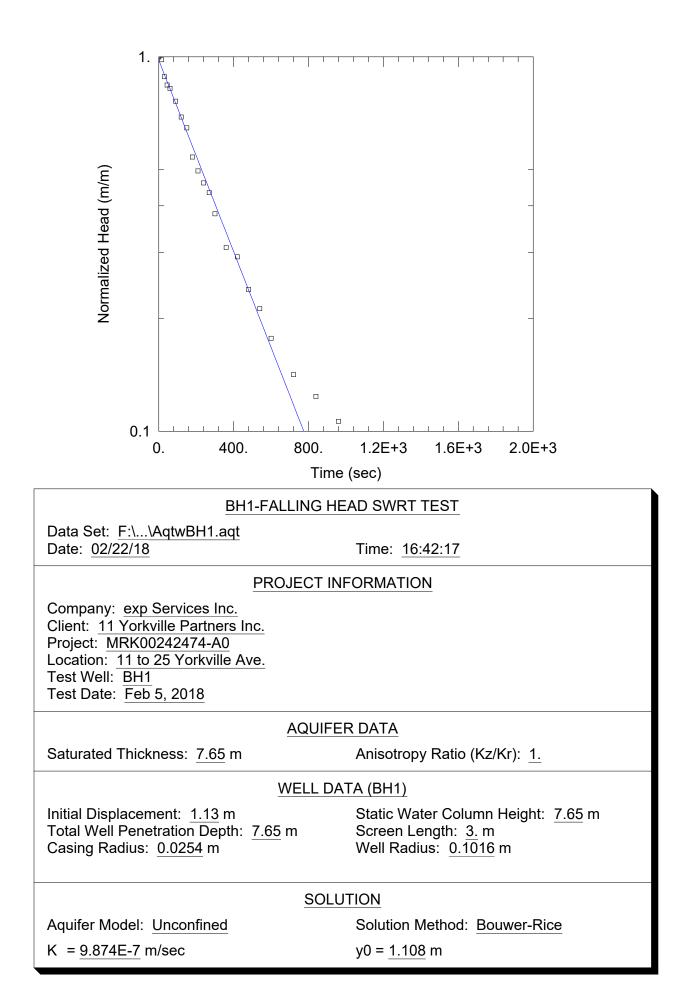
O ^{8=3%} Strain at Failure

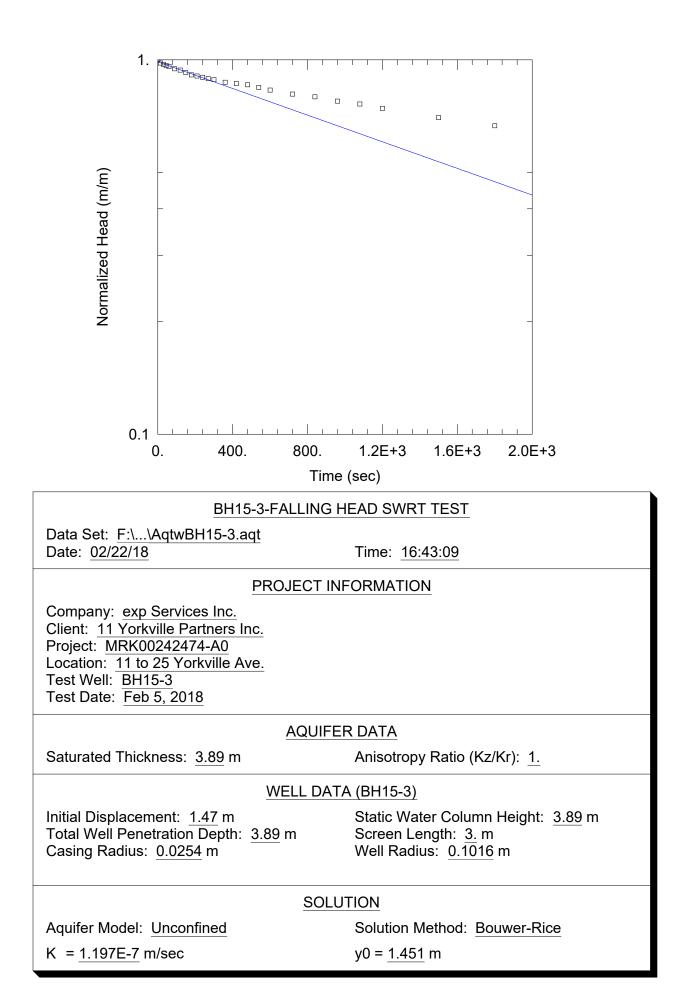
	Geotechnical Environmental Materials Hydro	geolo	ogy		LOC	GΟ	F BC	RE	HO	LEE	3H1	5-3									1 (OF 1
PROJ	ECT: Environmental Soil & Groundwate	er Inv	estig	ation				D	RILL	ING D	ATA											
CLIEN	IT: Bazis Inc.							Ν	/lethoo	d: Holl	low St	em Au	ugers									
PROJ	ECT LOCATION: 11-17 Yorkville Avenu	ie, To	oront	o, Onta	ario			D	Diame	ter: 20)3mm						R	REF. NO	D.: 10	0001:	354-100	
DATU	M: Geodetic							D	Date:	Jan/24	4/201	5					E	NCL N	0.: 2			
BH LC	CATION: See Borehole Location Plan		_																	_		
	SOIL PROFILE		5	SAMPL	ES			D R) YNAM RESIST	IC COI ANCE	NE PEI PLOT		TION			NAT	URAI			Т	REMAR	RKS
(m)		⊢				GROUND WATER			20			i0 8	30 1	00	PLAST LIMIT	IC NAT MOIS CON	STURE	LIQUID LIMIT	Ľ.	NATURAL UNIT WT (Mg/m ³)	AND	
(m) ELEV		STRATA PLOT			BLOWS 0.3 m	AW 0	S N	s	SHEAI	R STF	RENG	I TH (kl	Pa)	1	W _P		w 0	WL	POCKET PEN. (Cu) (kPa)	AL UN	GRAIN S	
DEPTH	DESCRIPTION	ATA	BER		BLO 0.3		EVATION		O UN	CONFI	NED	+	FIELD V & Sensit	ivity	W/A	TER CO		JT (%)	POC DO	ATUR (N	(%)	
116.3		STR.	NUMBER	ТҮРЕ	ż	GRO		_ '	 QU 20 				LAB V/ 30 1	ANE 00			20	30		z	GR SA S	SI CL
110.0	CONCRETE: 100mm	$\overline{\mathbf{x}}$	1	SS				16									-					
	FILL: silty sand to sand, trace clay, trace brick fragments, brownish grey	\bigotimes																				
	to brown, moist to very moist, very	\bigotimes	2	SS	3																	
	loose to compact	\mathbb{K}	3	SS	5																	
114.0 2.3	FINE SAND: trace silt, brown to		1		40		1.	14											-			
2.0	grey, moist, compact		4	SS	12																	
112.8	wet below 3.1m		5	SS	10																	
3.5	SILTY CLAY trace sand, occasional seams of fine sand and silt, grey,	K																				
	moist, stiff to very stiff	K	1				1	12											1			
		Ĥ	6	SS	10																	
		12	1																			
		11	_		45		1.	10														
		12	7	SS	15			`														
		R	1																			
		K	8	SS	14																	
		K	Ľ	00			10	08-											-			
		Ĥ	1																			
		12	9	SS	12																	
		K	┢																			
105.9	SILT: trace sand, trace clay, grey,	<u>ffi</u> f	1				10	D6														
	wet, compact		10	SS	23																	
							1(04														
	some clay, moist below 12.2m		11	SS	59			74														
				00	70																	
			12	SS	72		10)2 -											-			
101.5	SANDY SILT: trace clay, grey, wet,	┝	-																			
14.0	dense		13	SS	58																	
			13	33	50																	
99.8			1				10	00-														
5 16.5	SILT: trace clay, grey, wet, very dense		14	SS	66	¥	\\/ I).4 m													
5			<u> </u>						2015													
98.3	SANDY SILT TO SILTY SAND:	$\left \right $	-					_														
	frequent clayey silt seams/layers,		15	SS	64			98-											1			
97.0	grey, wet, very dense																					
19.3	CLAYEY SILT TILL: some sand to sandy, trace gravel, grey, moist, hard	H	1	<u> </u>																		
j	canay, addo gravor, gray, molot, hald	FUH	16	SS	46			96						-			-	_	1			
			1			目																
94.7		ЦЦ				ĿΕ	÷.															
94.6	SANDY SILT: trace clay, grey, wet.	<u>fill</u>	17	SS	43			+									-	_	-			
99.8 99.8 16.5 98.3 18.0 97.0 19.3 94.7 94.6 21.9	dense																					
	Notes:		1																			
3	 50mm dia. monitoring well installed in the borehole upon 																					
	completion.		1																			
			1																1			
'L			L	I				3					e-3%	L		1	1		1	I		

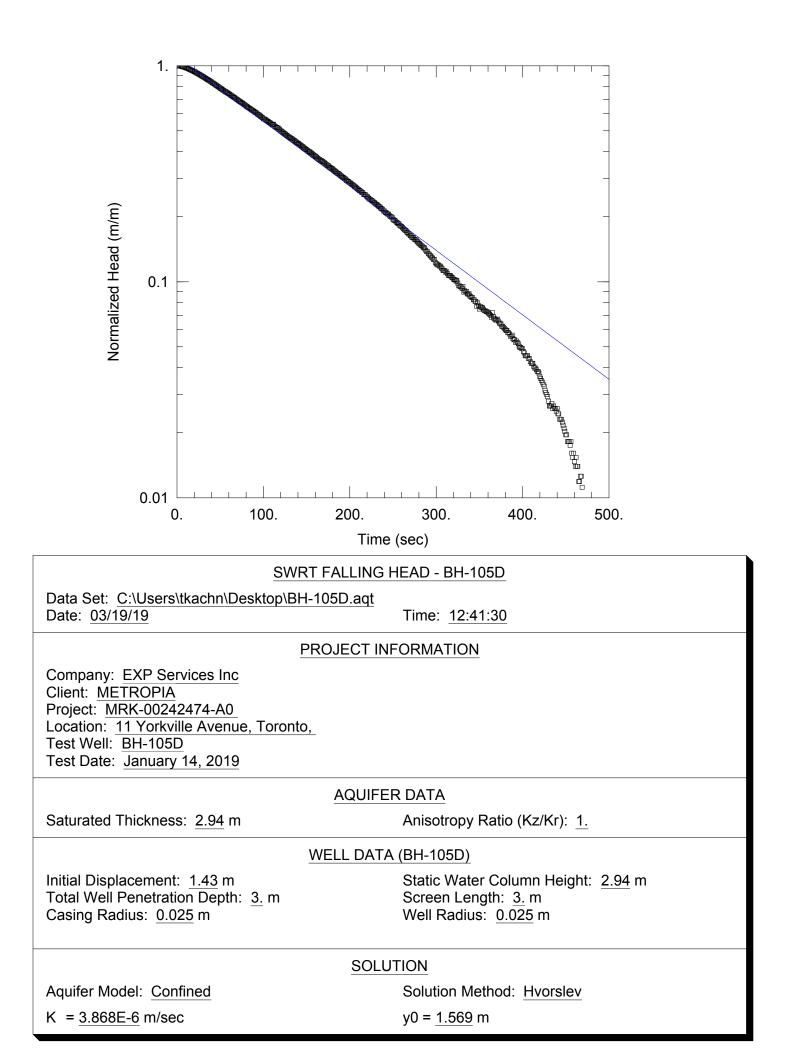
GROUNDWATER ELEVATIONS

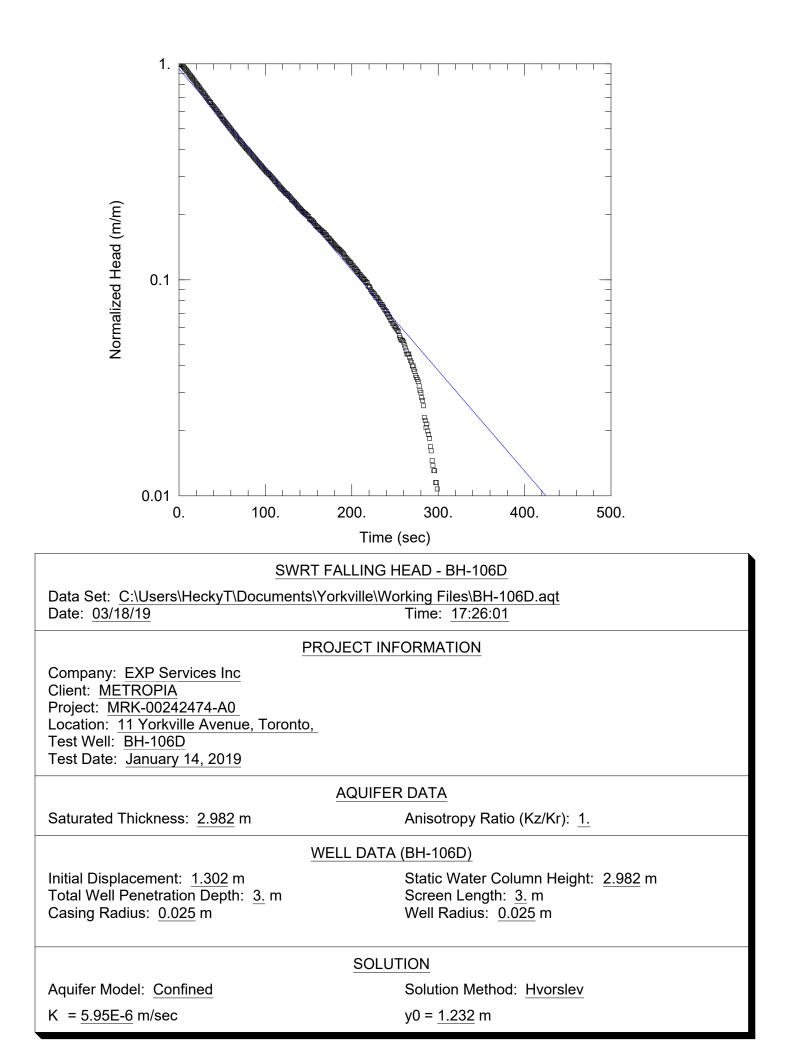
SPL Consultants Limited

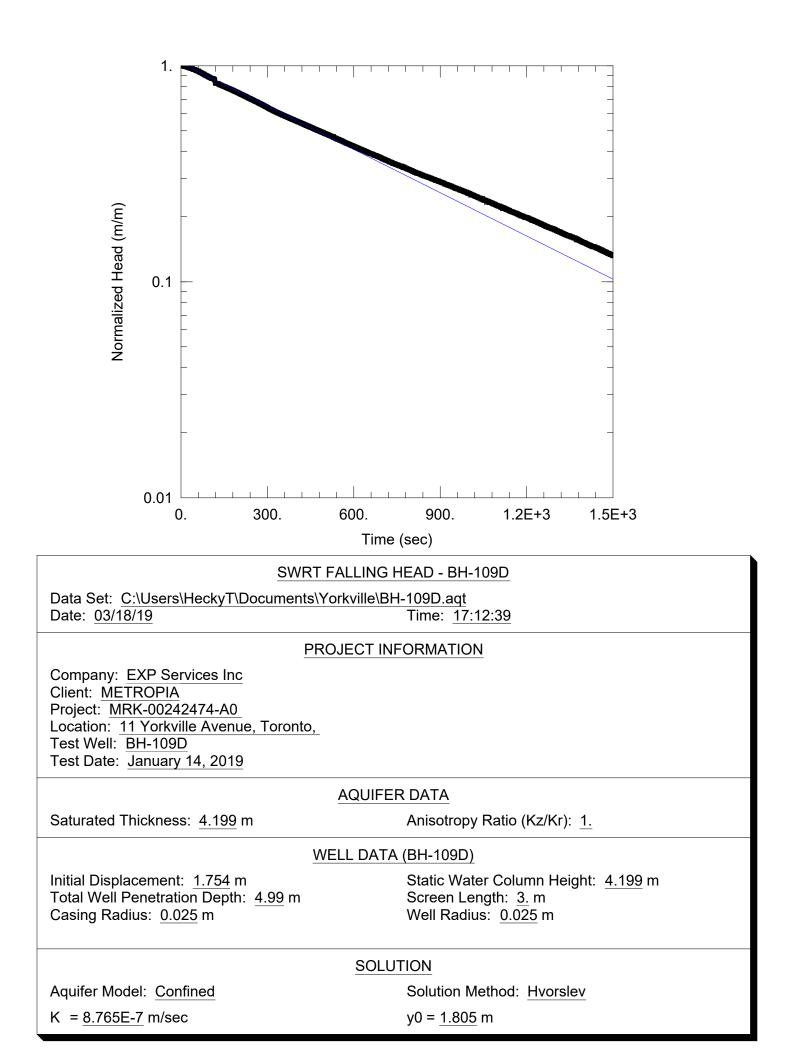
Shallow/ Single Installation $\underline{\nabla}$ $\underline{\nabla}$ Deep/Dual Installation $\underline{\nabla}$ $\underline{\nabla}$


O ^{8=3%} Strain at Failure


EXP Services Inc.


Project Number: MRK-00242474-A0 Date: Updated July 25, 2019


Appendix C – SWRT Procedures and Results



Single Well Response Testing Standard Operating Procedure No: 2012-8 Version 1.0 Revision Date: September, 2012

Prepared By:

exp 1595 Clark Boulevard Brampton, ON L6T 4V1 Canada T: +1.905.793.9800 F: +1.905.793.0641 www.exp.com

Standard Operating Procedure - Single Well Response Tests (SWRT)

1.0 Introduction

This standard operating procedure describes the use of **SWRT** (also commonly known as a slug test) to obtain estimates of the saturated hydraulic conductivity (K) in a groundwater formation. The in-situ determination of the saturated hydraulic conductivity and other hydraulic properties in an aquifer is important for characterizing groundwater flow.

Single well response tests are short-duration tests that provide estimates of the horizontal hydraulic conductivity of the geological formation in the immediate area around the well screen.

These tests involve the creation of an instantaneous change in water level and monitoring the response of the water level until it recovers to near static conditions. The instantaneous change in water level is accomplished by displacing a know volume of water through the introduction or withdrawal of water or a solid object (referred to as a 'slug') of known volume and monitoring the changes in the water level over time.

Monitoring the decrease in water level following the introduction of a slug is referred to a falling head test.

Monitoring the rise in water levels following the withdrawal of a slug is referred to as a rising head test.

It is critical to ensure:

- that the monitoring well was constructed appropriately and construction details are known;
- that the monitoring well to be tested is completely developed;
- that the well screen is free of any soil material.

If the well has not been developed recently, the well should be developed prior to commencing the SRWT.

SWRT Strengths

- Can be applied for low conductive layers where a pumping test is not feasible;
- Volume of purged water is minimal; therefore, does not need large amount of water disposal (important when testing potentially contaminated sites);
- Can be completed with minimal cost and a short period of time; and,
- No observation wells required.

SWRT Weaknesses

- Hydraulic Conductivity is given only for the immediately well area; and,
- If the formation is disturbed during MW installation, observed hydraulic conductivity maybe biased high.

2.0 Applicable Regulations/Guidelines

The following regulations and guidelines apply to this SOP:

- ASTM D4044-96 Standard Test method for (Field Procedures) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers
- ASTM D4104-96 e-1 Standard Test Method (Analytical Procedures) for determining Transmissivity of Non-leaky Confined Aquifers by Over-damped Well Response to Instantaneous Change in Head (Slug Test).
- ASTM 5785-95 Standard Test Method (Analytical Procedures) for determining Transmissivity of Non-leaky Confined Aquifers by Under-damped Well Response to Instantaneous Change in Head (Slug Test).

3.0 Related SOPs

Prior to commencing SWRT procedures, field personnel are required to refer the following additional SOPs:

- Monitoring Well Development (No. 2012-6); and,
- Groundwater Sampling (No. 2012-7).

4.0 Attachments

- Static Water Level Measurement and Data Logger Installation Form (Attachment 1); and,
- Single Well Response Test Field Data Entry Form (Attachment 2).

5.0 Planning & Preparation

Prior to conducting an intrusive investigation program, the follow tasks/activities are required:

- review the project specific Health and Safety Plan (HASP) noting all Site-specific hazards and personnel protective equipment requirements.
- review the approved scope of work and other relevant project documentation regarding:
 - the project objectives;
 - site conditions;
 - specific issues of concern;
 - field methodologies:
 - o sampling requirements including data quality objectives: and,
 - o quality assurance/quality control (QA/QC) measures.
- review any maps, borehole logs or other information relevant to the Site.
- obtain any available well logs and/or previous water level/water quality information on all the wells to be tested.

Required well information includes the following:

- borehole diameter (inner diameter of the well);
- well depth;
- static water levels;
- screen interval/depth;
- gravel pack interval/depth; and,
- geological unit screened.
- prepare an equipment check list and assemble all necessary equipment, forms, sampling containers, reagents, calibration standards.
- if not already on site, arrange for the provision of drums/containers for the collecting and storage of groundwater.
- gather equipment required to complete the SWRT. Rent and pick-up any equipment required to complete the test (see section 6.0 for a complete list of equipment).
- if using data loggers: check all the equipment for proper calibration; DLs to be reset; set the measuring interval to at least five (5) seconds, more frequent water level measurements; if a rapid water level change is expected, it is preferred to set-up the measuring interval to one (1) second.
- arrange access to the site, obtain any keys required to open wells or entrance gates.
- inform client, land owner, regulatory authorities etc. as appropriate; obtain any access/working permits to the site (e.g. City permit to work along the roads).

Note:

When dealing with contaminated sites, pre-plan the testing sequence: 'clean' wells should be tested prior to 'contaminated wells' to avoid cross contamination.

6.0 Equipment/Documentation List:

The equipment to conduct a SWRT program is to include the following:

- Copy of a signed health and safety plan
- Copy of the approved Scope of Work
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting
- Closed containers to collect decontamination fluids

7.0 Field Procedures

Single Well Response Tests can be performed using electronic water level meters to manually record water levels or pressure transducers (data loggers) with subsequent data transfer to a computer for analysis. In the case of a falling head slug test, it is critical that the static water level is above the top of the well screen interval, otherwise the test is measuring the response of the unsaturated sand pack and not of the surrounding saturated formation.

Slug tests should be performed on undisturbed wells. A minimum of one week should be allowed between completion of a well and conducting a slug test.

The well should be developed and the water level recovered to within 3 cm of its static level prior to performing the slug test.

The field procedures provided are proposed, assuming that the well has been previously developed. If the monitoring well is not properly developed, the test results may not be reliable.

<u>General</u>

- Inspect the monitoring wells and record static water levels moving from up-gradient to down-gradient.
- If the tests are being performed in an area of know groundwater contamination, proceed from the least contaminated to the most contaminated well.
- The volume of the slug should be sufficient to create minimum 50 cm (0.5 m) change in water level
- Prepare a decontamination area with two layers of 6 mil plastic sheeting and containers to collect wash and rinse waters.
- Decontaminate the slug prior to initial use and between monitoring well locations. The slug should be decontaminated by washing first with a mixture of municipal water and phosphate free detergent, followed by rinses with municipal water, ethyl alcohol, isopropyl alcohol or Alconox and deionized water.
- The disposable rope used to lower the slug at each monitoring well location should be changed between wells.

The general procedure for completing a SWRT using three different methods is summarized below followed by a more detailed discussion on how to record water levels (manually and electronically).

Note:

The volume of the slug (or water) should be sufficient to change the water level at least 0.5 m. If the SWL is within the gravel pack, the volume calculation must account for the porosity (0.3 in general) of the sand pack. For bail-down tests, the volume of water removed must be recorded.

SWRT Methods

a) SWRT Using a Solid Slug

- Identify the well, clean the work area if required, measure static water level and time, total well depth, and record data logger serial number.
- Install the data logger at a sufficient depth below the water table, so that the slug will not strike the data logger upon insertion into the well; record the data logger depth.
- Set the slug just above the water table.
- If using a baro logger, install just below the top of the casing (ie. 1 meter below the casing).
- Pre-measure the length of string holding the slug the slug must be completely submerged in water once dropped into the well.
- Release the slug instantaneously into water.
- Measure water level manually at intervals specified on the field form along with the time elapsed and the time of day (the time of day is required to correspond measurements with the data logger).
- Leave the slug in the well until water column has recovered by at least 90%.

Once 90% recovery is achieved, the slug and data logger can be removed.

b) SWRT By Injecting a Slug of Water

- Identify the well, clean the work area if required, measure:
 - o static water level and time;
 - o total well depth; and,
 - record data logger serial number.
- Calculate the required volume of water to raise the water table for approximately 1.0 to 2.0 m from the static water level.

It is preferred to add enough water to raise the water level by at least 0.5 m from the static water level.

If the SWL is within the gravel pack, the volume calculation must account for the porosity (0.3 in general) of the sand pack.

- Add a known volume of water rapidly to the well.
- Measure water level manually at intervals specified on the field form along with the time elapsed and the time of day (the time of day is required to correspond measurements with the data logger).
- Leave the data logger in the well until water column has recovered by at least 90%.
- Take one last manual measurement of the water level and remove the data logger from the well.

c) SWRT By Removing A Known Volume of Water (Bail-down Test)

- Identify the well, clean the work area if required, measure static water level and time, total well depth, and record data logger serial number.
- Pre-determine the data logger installation depth and keep the data logger ready to install, as it will be installed immediately after bailing the well.
- Remove water from the well using a bailer (this must be done as quickly as possible!).
- Pour the removed water into a container the volume of water removed must be measured once the test is completed.
- Install the data logger to the pre-determined depth, record the depth.
- Measure water level manually at intervals specified on the field form along with the time elapsed and the time of day (the time of day is required to correspond measurements with the data logger).
- Leave the data logger in the well until the water column has recovered by at least 90%.
- Take one last manual water level measurement and remove the data logger from the well, documenting the time of removal.

Note:

A bailer that has the proper diameter can be used to rapidly remove required amount of water from the well.

Procedures for Water Level Measurements

a) Manual Measurements (Electronic Water Level Meter)

- Decontaminate the electronic water level meter prior to use.
- For a falling head test, position the slug just above the static water level and the water level meter immediately above the slug.

Quickly release the slug to create an instantaneous water level change and ensure that the slug is completely submerged.

- Upon release of the slug, quickly re-position the water level meter to record the water level and assign the level as the time zero reading.
- Start the stop watch and record the water level and the elapsed time at successive intervals as indicated on the field form.

The recording intervals and the initial response period will be determined by the aquifer specific conditions.

If the aquifer response is extremely quick, the measurement increments should be adjusted accordingly.

- If water is to be introduced into the well, ensure that it is from a clean source and transported in a clean container.
- Continue to record water levels for the falling head test until the water level has recovered to within 90% of its initial level.
- Upon 90% recovery, remove the water level probe and quickly remove the slug from the well to conduct the rising head test.
- Quickly re-position the water level meter to record the zero time water level.
- Record water levels over 10 second intervals or the shortest time interval as possible during the initial response period.
- Continue to record water levels for the rising head test until the water column has recovered by at least 90%.
- Be sure to document the monitoring well location, the date and time of the slug test, the model and make of the pressure transducer and data logger, the slug volume, the tests performed, depth to water and any comments in a slug test form or in a bound field notebook.

b) Level Logger Measurements (Pressure Transducers)

• Check the response and range of the pressure transducer and review the operations of the date recorder.

Ensure that the transducer pressure range is appropriate for the water column depth.

- Decontaminate the pressure transducer and cable.
- Prior to positioning of the pressure transducer, line the edges of the well casing to protect the transducer cable.
- Set up the data logger and enter required data to initiate data logging according to the manufactures instructions.
- Position the pressure transducer at a depth where it will not be struck by the slug and at least 60 cm above the bottom of the well.

It is critical that the data logger depth be recorded in order to calibrate the readings once the test is completed.

- Set the pressure transducer to record water levels at 1 second intervals and at shorter intervals for more coarse textured media.
 - Record water levels to the nearest 0.5 cm
 - o Record the time of day to the nearest second.

The number of measurements and intervals will depend on the formation specific conditions.

- Take manual water level measurements using an electronic water level meter at regular intervals to confirm the pressure transducer readings.
- For the falling head test, position the slug just above the static water level and quickly release the slug to create an instantaneous water level change.

Ensure that the slug is completely submerged.

- If water is to be introduced into the well, ensure that it is from a clean source and transported in a clean container.
- Continue to record water levels for the falling head test until the water column has recovered to at least 90% of the documented static water level.
- Upon 90% recovery, quickly remove the slug from the well to conduct the rising head test.
- Continue to record water levels for the rising head test until the water column has recovered by at least 90% of the documented static water level.
- Continue to record water levels manually using an electronic water level meter (to calibrate / confirm the data logger readings).
- On completion of the rising head test, remove the data logger and download the water level and time data from to a computer.
- Be sure to document:
 - o the monitoring well location;
 - the date and time of the Single Well Response Test:
 - o the make and model of any equipment used (pressure transducer, data logger);
 - o the slug volume;
 - the tests performed;

- o depth to water; and,
- o any comments in a slug test form or in a bound field notebook.

Additional Notes:

- All manual measurements used to calibrate data logger data should correspond with the time of day (as the data logger will record levels that correspond to time of day).
- Ensure the starting time and measuring intervals of the data logger are properly aligned (start at the same time of day).

Further Readings:

C.W. Fetter Applied Hydrogeology

END OF SOP

Project Number: MRK-00242474-A0 Date: Updated July 25, 2019

Appendix D – Laboratory Certificates of Analysis

Your Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Your C.O.C. #: 649244-01-01

Attention: Robert Ferris

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON L3T 0A8

> Report Date: 2018/02/13 Report #: R4984388 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B828879 Received: 2018/02/07, 15:12

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sewer Use By-Law Semivolatile Organics	1	2018/02/09	2018/02/11	EPA 8270	EPA 8270 m
				CAM SOP 00301	
Biochemical Oxygen Demand (BOD)	1	2018/02/07	2018/02/12	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2018/02/12	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2018/02/09	2018/02/09	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2018/02/09	2018/02/12	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2018/02/08	2018/02/09	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2018/02/13	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2018/02/07	CAM SOP-00552	MOE LSB E3371
Total Nonylphenol in Liquids by HPLC	1	2018/02/08	2018/02/09	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2018/02/08	2018/02/09	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2018/02/09	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2018/02/09	2018/02/09	CAM SOP-00326	EPA1664B m,SM5520A m
Polychlorinated Biphenyl in Water	1	2018/02/08	2018/02/08	CAM SOP-00309	EPA 8082A m
рН	1	N/A	2018/02/12	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2018/02/12	CAM SOP-00444	OMOE E3179 m
Total Kjeldahl Nitrogen in Water	1	2018/02/09	2018/02/09	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2018/02/12	CAM SOP - 00301	EPA 8270 m
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2018/02/09	2018/02/09	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2018/02/08	2018/02/08	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2018/02/09	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Your Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Your C.O.C. #: 649244-01-01

Attention: Robert Ferris

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON L3T 0A8

> Report Date: 2018/02/13 Report #: R4984388 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B828879 Received: 2018/02/07, 15:12

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Deepthi Shaji, Project Manager Email: dshaji@maxxam.ca Phone# (905)817-5700 Ext:5807

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Sampler Initials: PS

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID				GBA094			GBA094		
Sampling Date				2018/02/07 11:30			2018/02/07 11:30		
COC Number				649244-01-01			649244-01-01		
	UNITS	Criteria	Criteria-2	BH15-3	RDL	QC Batch	BH15-3 Lab-Dup	RDL	QC Batch
Calculated Parameters					•				
Total Animal/Vegetable Oil and Grease	mg/L	150	-	3.8	0.50	5388315			
Inorganics				•					
Total BOD	mg/L	300	15	8	2	5388675			
Fluoride (F-)	mg/L	10	-	0.16	0.10	5393435			
Total Kjeldahl Nitrogen (TKN)	mg/L	100	-	2.1	0.10	5392265			
рН	pН	6.0:11.5	6.0:9.5	7.93		5393439			
Phenols-4AAP	mg/L	1.0	0.008	<0.0010	0.0010	5394856			
Total Suspended Solids	mg/L	350	15	12000	50	5390802			
Total Cyanide (CN)	mg/L	2	0.02	<0.0050	0.0050	5392358	<0.0050	0.0050	5392358
Petroleum Hydrocarbons			ł	•	<u>.</u>	ł			
Total Oil & Grease	mg/L	-	-	5.7	0.50	5392153			
Total Oil & Grease Mineral/Synthetic	mg/L	15	-	1.9	0.50	5392155			
Miscellaneous Parameters			•			•			
Nonylphenol Ethoxylate (Total)	mg/L	0.2	0.01	<0.005	0.005	5390589			
Nonylphenol (Total)	mg/L	0.02	0.001	<0.001	0.001	5390573			
Metals				•	•			•	
Chromium (VI)	ug/L	2000	40	<0.50	0.50	5395203	<0.50	0.50	5395203
Mercury (Hg)	mg/L	0.01	0.0004	<0.0001	0.0001	5391083			
Total Aluminum (Al)	ug/L	50000	-	19000	25	5392751			
Total Antimony (Sb)	ug/L	5000	-	1.3	0.50	5392751			
Total Arsenic (As)	ug/L	1000	20	5.5	1.0	5392751			
Total Cadmium (Cd)	ug/L	700	8	0.29	0.10	5392751			
Total Chromium (Cr)	ug/L	4000	80	44	5.0	5392751			
Total Cobalt (Co)	ug/L	5000	-	16	0.50	5392751			
Total Copper (Cu)	ug/L	2000	40	36	1.0	5392751			
Total Lead (Pb)	ug/L	1000	120	14	0.50	5392751			
Total Manganese (Mn)	ug/L	5000	50	940	2.0	5392751			
Total Molybdenum (Mo)	ug/L	5000	-	2.1	0.50	5392751			
Total Nickel (Ni)	ug/L	2000	80	37	1.0	5392751			
Total Phosphorus (P)	ug/L	10000	400	1700	100	5392751			
Total Selenium (Se)	ug/L	1000	20	<2.0	2.0	5392751			

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

Criteria-2: Toronto Storm Sewer Discharge Use By-Law

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Sampler Initials: PS

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID				GBA094			GBA094		
Sampling Date				2018/02/07 11:30			2018/02/07 11:30		
COC Number				649244-01-01			649244-01-01		
	UNITS	Criteria	Criteria-2	BH15-3	RDL	QC Batch	BH15-3 Lab-Dup	RDL	QC Batch
Total Silver (Ag)	ug/L	5000	120	<0.10	0.10	5392751			
Total Tin (Sn)	ug/L	5000	-	1.4	1.0	5392751			
Total Titanium (Ti)	ug/L	5000	-	880	25	5392751			
Total Zinc (Zn)	ug/L	2000	40	76	5.0	5392751			
Semivolatile Organics			•			•			<u>.</u>
Di-N-butyl phthalate	ug/L	80	15	<2	2	5393106			
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2	2	5393106			
3,3'-Dichlorobenzidine	ug/L	2	0.8	<0.8	0.8	5393106			
Pentachlorophenol	ug/L	5	2	<1	1	5393106			
Phenanthrene	ug/L	-	-	<0.2	0.2	5393106			
Anthracene	ug/L	-	-	<0.2	0.2	5393106			
Fluoranthene	ug/L	-	-	<0.2	0.2	5393106			
Pyrene	ug/L	-	-	<0.2	0.2	5393106			
Benzo(a)anthracene	ug/L	-	-	<0.2	0.2	5393106			
Chrysene	ug/L	-	-	<0.2	0.2	5393106			
Benzo(b/j)fluoranthene	ug/L	-	-	<0.2	0.2	5393106			
Benzo(k)fluoranthene	ug/L	-	-	<0.2	0.2	5393106			
Benzo(a)pyrene	ug/L	-	-	<0.2	0.2	5393106			
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.2	0.2	5393106			
Dibenz(a,h)anthracene	ug/L	-	-	<0.2	0.2	5393106			
Benzo(g,h,i)perylene	ug/L	-	-	<0.2	0.2	5393106			
Dibenzo(a,i)pyrene	ug/L	-	-	<0.2	0.2	5393106			
Benzo(e)pyrene	ug/L	-	-	<0.2	0.2	5393106			
Perylene	ug/L	-	-	0.5	0.2	5393106			
Dibenzo(a,j) acridine	ug/L	-	-	<0.4	0.4	5393106			
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	<0.4	0.4	5393106			
1,6-Dinitropyrene	ug/L	-	-	<0.4	0.4	5393106			1
1,3-Dinitropyrene	ug/L	-	-	<0.4	0.4	5393106			1
1,8-Dinitropyrene	ug/L	-	-	<0.4	0.4	5393106			1
Calculated Parameters									
Total PAHs (18 PAHs)	ug/L	5	2	<1	1	5389478			1

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

Criteria-2: Toronto Storm Sewer Discharge Use By-Law

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Sampler Initials: PS

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID				GBA094			GBA094		
Compling Data				2018/02/07			2018/02/07		
Sampling Date				11:30			11:30		
COC Number				649244-01-01			649244-01-01		
	UNITS	Criteria	Criteria-2	BH15-3	RDL	QC Batch	BH15-3 Lab-Dup	RDL	QC Batch
Volatile Organics									
Benzene	ug/L	10	2	<0.10	0.10	5391155	<0.10	0.10	5391155
Chloroform	ug/L	40	2	<0.10	0.10	5391155	<0.10	0.10	5391155
1,2-Dichlorobenzene	ug/L	50	5.6	<0.20	0.20	5391155	<0.20	0.20	5391155
1,4-Dichlorobenzene	ug/L	80	6.8	<0.20	0.20	5391155	<0.20	0.20	5391155
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.10	0.10	5391155	<0.10	0.10	5391155
trans-1,3-Dichloropropene	ug/L	140	5.6	<0.20	0.20	5391155	<0.20	0.20	5391155
Ethylbenzene	ug/L	160	2	<0.10	0.10	5391155	<0.10	0.10	5391155
Methylene Chloride(Dichloromethane)	ug/L	2000	5.2	<0.50	0.50	5391155	<0.50	0.50	5391155
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.20	0.20	5391155	<0.20	0.20	5391155
Tetrachloroethylene	ug/L	1000	4.4	<0.10	0.10	5391155	<0.10	0.10	5391155
Toluene	ug/L	16	2	<0.20	0.20	5391155	<0.20	0.20	5391155
Trichloroethylene	ug/L	400	7.6	<0.10	0.10	5391155	<0.10	0.10	5391155
p+m-Xylene	ug/L	-	-	<0.10	0.10	5391155	<0.10	0.10	5391155
o-Xylene	ug/L	-	-	<0.10	0.10	5391155	<0.10	0.10	5391155
Total Xylenes	ug/L	1400	4.4	<0.10	0.10	5391155	<0.10	0.10	5391155
PCBs									
Total PCB	ug/L	1	0.4	<0.05	0.05	5390822			
Microbiological									
Escherichia coli	CFU/100mL	-	200	<10	10	5389800			
Surrogate Recovery (%)									
2,4,6-Tribromophenol	%	-	-	81		5393106			
2-Fluorobiphenyl	%	-	-	38		5393106			
D14-Terphenyl (FS)	%	-	-	88		5393106			
D5-Nitrobenzene	%	-	-	32		5393106			
D8-Acenaphthylene	%	-	-	57		5393106			
Decachlorobiphenyl	%	-	-	75		5390822			
4-Bromofluorobenzene	%	-	-	97		5391155	98		5391155
D4-1,2-Dichloroethane	%	-	-	103		5391155	104		5391155
D8-Toluene	%	-	-	97		5391155	98		5391155
RDL = Reportable Detection Limit	•		1			1			1

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

Criteria-2: Toronto Storm Sewer Discharge Use By-Law

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Sampler Initials: PS

TEST SUMMARY

Maxxam ID:	GBA094
Sample ID:	BH15-3
Matrix:	Water

Maxxam ID: GBA094 Sample ID: BH15-3 Matrix: Water					Collected: 2018/02/07 Shipped: Received: 2018/02/07
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	5393106	2018/02/09	2018/02/11	Kathy Horvat
Biochemical Oxygen Demand (BOD)	DO	5388675	2018/02/07	2018/02/12	Barbara Kalbasi Esfahani
Chromium (VI) in Water	IC	5395203	N/A	2018/02/12	Sally Coughlin
Total Cyanide	SKAL/CN	5392358	2018/02/09	2018/02/09	Xuanhong Qiu
Fluoride	ISE	5393435	2018/02/09	2018/02/12	Surinder Rai
Mercury in Water by CVAA	CV/AA	5391083	2018/02/08	2018/02/09	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	5392751	N/A	2018/02/13	Prempal Bhatti
E.coli, (CFU/100mL)	PL	5389800	N/A	2018/02/07	Sirimathie Aluthwala
Total Nonylphenol in Liquids by HPLC	LC/FLU	5390573	2018/02/08	2018/02/09	Dennis Boodram
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	5390589	2018/02/08	2018/02/09	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	5388315	N/A	2018/02/09	Automated Statchk
Total Oil and Grease	BAL	5392153	2018/02/09	2018/02/09	Francis Afonso
Polychlorinated Biphenyl in Water	GC/ECD	5390822	2018/02/08	2018/02/08	Sarah Huang
рН	AT	5393439	N/A	2018/02/12	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5394856	N/A	2018/02/12	Bramdeo Motiram
Total Kjeldahl Nitrogen in Water	SKAL	5392265	2018/02/09	2018/02/09	Rajni Tyagi
Total PAHs	CALC	5389478	N/A	2018/02/12	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	5392155	2018/02/09	2018/02/09	Francis Afonso
Total Suspended Solids	BAL	5390802	2018/02/08	2018/02/08	Nusrat Naz
Volatile Organic Compounds in Water	P&T/MS	5391155	N/A	2018/02/09	Rebecca McClean

Maxxam ID:	GBA094 Dup
Sample ID:	BH15-3
Matrix:	Water

Collected:	2018/02/07
Shipped:	
Received:	2018/02/07

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	5395203	N/A	2018/02/12	Sally Coughlin
Total Cyanide	SKAL/CN	5392358	2018/02/09	2018/02/09	Xuanhong Qiu
Volatile Organic Compounds in Water	P&T/MS	5391155	N/A	2018/02/09	Rebecca McClean

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Sampler Initials: PS

GENERAL COMMENTS

Each	Each temperature is the average of up to three cooler temperatures taken at receipt										
	Package 1	2.3°C]								
,	. ,	·	TORONTO SANITARY & STORM SEWER PACKAGE (WATER) The recovery in the matrix spike was not calculated (NC) due to background interference. recovery in the matrix spike was not calculated (NC) due to background interference.								

Results relate only to the items tested.

Maxxam Job #: B828879 Report Date: 2018/02/13

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: MRK-00242474-A0

Site Location: 19 YORKVILLE Sampler Initials: PS

			Matrix	Matrix Spike		BLANK	Method Blank		RPD		QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5390822	Decachlorobiphenyl	2018/02/08	105	60 - 130	83	60 - 130	85	%				
5391155	4-Bromofluorobenzene	2018/02/09	102	70 - 130	101	70 - 130	99	%				
5391155	D4-1,2-Dichloroethane	2018/02/09	103	70 - 130	100	70 - 130	102	%				
5391155	D8-Toluene	2018/02/09	99	70 - 130	100	70 - 130	98	%				
5393106	2,4,6-Tribromophenol	2018/02/11	90	10 - 130	88	10 - 130	77	%				
5393106	2-Fluorobiphenyl	2018/02/11	73	30 - 130	60	30 - 130	67	%				
5393106	D14-Terphenyl (FS)	2018/02/11	96	30 - 130	103	30 - 130	100	%				
5393106	D5-Nitrobenzene	2018/02/11	76	30 - 130	61	30 - 130	63	%				
5393106	D8-Acenaphthylene	2018/02/11	82	30 - 130	70	30 - 130	70	%				
5388675	Total BOD	2018/02/12					<2	mg/L	NC	30	100	80 - 120
5390573	Nonylphenol (Total)	2018/02/09	NC	50 - 130	106	50 - 130	<0.001	mg/L	7.3	40		
5390589	Nonylphenol Ethoxylate (Total)	2018/02/09	NC	50 - 130	103	50 - 130	<0.005	mg/L	0.69	40		
5390802	Total Suspended Solids	2018/02/08					<10	mg/L	1.0	25	100	85 - 115
5390822	Total PCB	2018/02/08	108	60 - 130	78	60 - 130	<0.05	ug/L	NC	40		
5391083	Mercury (Hg)	2018/02/09	102	75 - 125	99	80 - 120	<0.0001	mg/L	NC	20		
5391155	1,1,2,2-Tetrachloroethane	2018/02/09	110	70 - 130	101	70 - 130	<0.20	ug/L	NC	30		
5391155	1,2-Dichlorobenzene	2018/02/09	101	70 - 130	94	70 - 130	<0.20	ug/L	NC	30		
5391155	1,4-Dichlorobenzene	2018/02/09	102	70 - 130	95	70 - 130	<0.20	ug/L	NC	30		
5391155	Benzene	2018/02/09	100	70 - 130	90	70 - 130	<0.10	ug/L	NC	30		
5391155	Chloroform	2018/02/09	103	70 - 130	91	70 - 130	<0.10	ug/L	NC	30		
5391155	cis-1,2-Dichloroethylene	2018/02/09	104	70 - 130	92	70 - 130	<0.10	ug/L	NC	30		
5391155	Ethylbenzene	2018/02/09	103	70 - 130	92	70 - 130	<0.10	ug/L	NC	30		
5391155	Methylene Chloride(Dichloromethane)	2018/02/09	105	70 - 130	91	70 - 130	<0.50	ug/L	NC	30		
5391155	o-Xylene	2018/02/09	105	70 - 130	95	70 - 130	<0.10	ug/L	NC	30		
5391155	p+m-Xylene	2018/02/09	105	70 - 130	94	70 - 130	<0.10	ug/L	NC	30		
5391155	Tetrachloroethylene	2018/02/09	98	70 - 130	88	70 - 130	<0.10	ug/L	NC	30		
5391155	Toluene	2018/02/09	100	70 - 130	90	70 - 130	<0.20	ug/L	NC	30		
5391155	Total Xylenes	2018/02/09					<0.10	ug/L	NC	30		
5391155	trans-1,3-Dichloropropene	2018/02/09	110	70 - 130	98	70 - 130	<0.20	ug/L	NC	30		
5391155	Trichloroethylene	2018/02/09	102	70 - 130	91	70 - 130	<0.10	ug/L	NC	30		
5392153	Total Oil & Grease	2018/02/09			101	85 - 115	<0.50	mg/L	4.5	25		

Maxxam Job #: B828879 Report Date: 2018/02/13

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: MRK-00242474-A0

Site Location: 19 YORKVILLE Sampler Initials: PS

			Matrix Spike		SPIKED	BLANK	Method I	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5392155	Total Oil & Grease Mineral/Synthetic	2018/02/09			92	85 - 115	<0.50	mg/L	3.0	25		
5392265	Total Kjeldahl Nitrogen (TKN)	2018/02/09	NC	80 - 120	100	80 - 120	<0.10	mg/L	1.7	20	99	80 - 120
5392358	Total Cyanide (CN)	2018/02/09	102	80 - 120	99	80 - 120	<0.0050	mg/L	NC	20		
5392751	Total Aluminum (Al)	2018/02/13	109	80 - 120	105	80 - 120	<5.0	ug/L	NC	20		
5392751	Total Antimony (Sb)	2018/02/13	105	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
5392751	Total Arsenic (As)	2018/02/13	102	80 - 120	98	80 - 120	<1.0	ug/L	NC	20		
5392751	Total Cadmium (Cd)	2018/02/13	102	80 - 120	97	80 - 120	<0.10	ug/L	NC	20		
5392751	Total Chromium (Cr)	2018/02/13	101	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
5392751	Total Cobalt (Co)	2018/02/13	106	80 - 120	101	80 - 120	<0.50	ug/L	NC	20		
5392751	Total Copper (Cu)	2018/02/13	112	80 - 120	104	80 - 120	<1.0	ug/L	NC	20		
5392751	Total Lead (Pb)	2018/02/13	97	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
5392751	Total Manganese (Mn)	2018/02/13	101	80 - 120	98	80 - 120	<2.0	ug/L	0.26	20		
5392751	Total Molybdenum (Mo)	2018/02/13	107	80 - 120	95	80 - 120	<0.50	ug/L	5.3	20		
5392751	Total Nickel (Ni)	2018/02/13	102	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
5392751	Total Phosphorus (P)	2018/02/12	102	80 - 120	96	80 - 120	<100	ug/L				
5392751	Total Selenium (Se)	2018/02/13	105	80 - 120	108	80 - 120	<2.0	ug/L	NC	20		
5392751	Total Silver (Ag)	2018/02/13	100	80 - 120	98	80 - 120	<0.10	ug/L	NC	20		
5392751	Total Tin (Sn)	2018/02/13	102	80 - 120	94	80 - 120	<1.0	ug/L	NC	20		
5392751	Total Titanium (Ti)	2018/02/13	101	80 - 120	98	80 - 120	<5.0	ug/L	NC	20		
5392751	Total Zinc (Zn)	2018/02/13	97	80 - 120	96	80 - 120	<5.0	ug/L	NC	20		
5393106	1,3-Dinitropyrene	2018/02/12	76	30 - 130	94	30 - 130	<0.4	ug/L	NC	40		
5393106	1,6-Dinitropyrene	2018/02/12	83	30 - 130	95	30 - 130	<0.4	ug/L	NC	40		
5393106	1,8-Dinitropyrene	2018/02/12	86	30 - 130	103	30 - 130	<0.4	ug/L	NC	40		
5393106	3,3'-Dichlorobenzidine	2018/02/12	93	30 - 130	112	30 - 130	<0.8	ug/L	NC	40		
5393106	7H-Dibenzo(c,g) Carbazole	2018/02/12	94	30 - 130	85	30 - 130	<0.4	ug/L	NC	40		
5393106	Anthracene	2018/02/12	89	30 - 130	88	30 - 130	<0.2	ug/L	NC	40		
5393106	Benzo(a)anthracene	2018/02/12	91	30 - 130	98	30 - 130	<0.2	ug/L	NC	40		
5393106	Benzo(a)pyrene	2018/02/12	93	30 - 130	98	30 - 130	<0.2	ug/L	NC	40		
5393106	Benzo(b/j)fluoranthene	2018/02/12	99	30 - 130	99	30 - 130	<0.2	ug/L	NC	40		
5393106	Benzo(e)pyrene	2018/02/12	98	30 - 130	102	30 - 130	<0.2	ug/L	NC	40		
5393106	Benzo(g,h,i)perylene	2018/02/12	102	30 - 130	93	30 - 130	<0.2	ug/L	NC	40		

Maxxam Job #: B828879 Report Date: 2018/02/13

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: MRK-00242474-A0

Site Location: 19 YORKVILLE Sampler Initials: PS

			Matrix Spike		SPIKED	BLANK	Method I	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5393106	Benzo(k)fluoranthene	2018/02/12	88	30 - 130	100	30 - 130	<0.2	ug/L	NC	40		
5393106	Bis(2-ethylhexyl)phthalate	2018/02/12	91	30 - 130	98	30 - 130	<2	ug/L	NC	40		
5393106	Chrysene	2018/02/12	99	30 - 130	101	30 - 130	<0.2	ug/L	NC	40		
5393106	Dibenz(a,h)anthracene	2018/02/12	104	30 - 130	95	30 - 130	<0.2	ug/L	NC	40		
5393106	Dibenzo(a,i)pyrene	2018/02/12	120	30 - 130	123	30 - 130	<0.2	ug/L	NC	40		
5393106	Dibenzo(a,j) acridine	2018/02/12	97	30 - 130	88	30 - 130	<0.4	ug/L	NC	40		
5393106	Di-N-butyl phthalate	2018/02/12	103	30 - 130	102	30 - 130	<2	ug/L	NC	40		
5393106	Fluoranthene	2018/02/12	95	30 - 130	101	30 - 130	<0.2	ug/L	NC	40		
5393106	Indeno(1,2,3-cd)pyrene	2018/02/12	107	30 - 130	99	30 - 130	<0.2	ug/L	NC	40		
5393106	Pentachlorophenol	2018/02/12	88	30 - 130	68	30 - 130	<1	ug/L	NC	40		
5393106	Perylene	2018/02/12	92	30 - 130	92	30 - 130	<0.2	ug/L	NC	40		
5393106	Phenanthrene	2018/02/12	90	30 - 130	91	30 - 130	<0.2	ug/L	NC	40		
5393106	Pyrene	2018/02/12	96	30 - 130	101	30 - 130	<0.2	ug/L	NC	40		
5393435	Fluoride (F-)	2018/02/12	105	80 - 120	101	80 - 120	<0.10	mg/L	3.3	20		
5393439	рН	2018/02/12			101	98 - 103			0.43	N/A		
5394856	Phenols-4AAP	2018/02/12	103	80 - 120	98	80 - 120	<0.0010	mg/L	6.1	20		
5395203	Chromium (VI)	2018/02/12	96	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

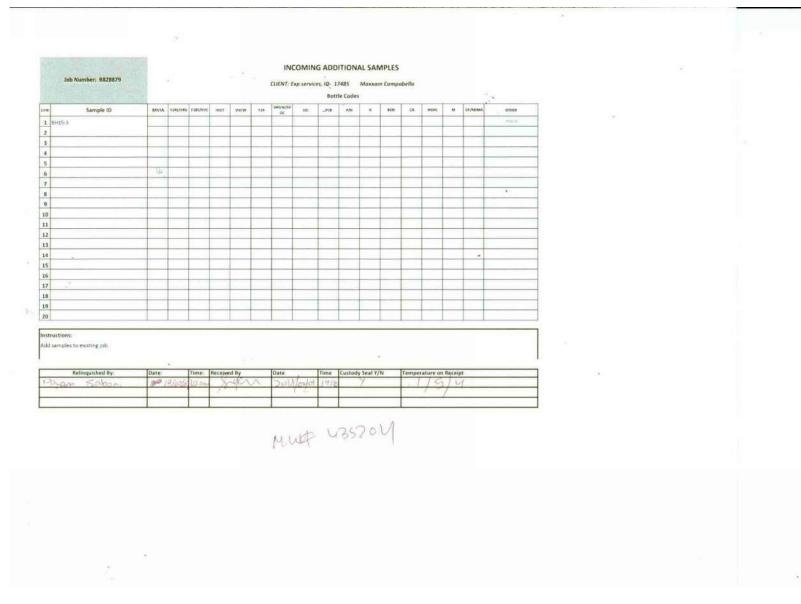
NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 19 YORKVILLE Sampler Initials: PS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).


Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Sirimathie Aluthwala, Campobello Micro

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		NVOICE TO:			REPO	RT TO:		-				PROJE	CT INFORM	ATION:	8	-	Laboratory Use (Only:
y Name	#17485 exp Se	ervices Inc	Company	Name		· · · · ·				Quotation	#	B459	898		2		Maxxam Job #:	Bottle Order #:
ţ.	Simon Lan		Altention		NOM SO	PO.#												
		20 Commerce Valley Dr W Suite 500 Address Robert Arricits		Dexf. Cum Dexf. Com							Yorky		111.41	1	COC #:	649244 Project Manager:		
	(905) 695-3217		Tel	40-ADN	1. Sohoni	Fax	om	-		Project No	8750	on	MAK-	0024	1247	1-10		
	simon lan@exp.	1.45	Email	robert f	erris@exp.co			_		Site #	By	R					C#649244-01-01	Deepthi Shay
EREG	ULATED DRINKIN	IG WATER OR WATER INTENDED	FOR HUMAN C	ONSUMPTION	MUST BE		L		A	ALYSIS RE	QUESTED	PLEASE	BE SPECIF	10)			Tumaround Time (TAT) R	
	SUBMITTED	ON THE MAXXAM DRINKING WA		CUSTODY		-								1			Please provide advance notice fo Regular (Standard) TAT:	or rush projects
	ion 153 (2011)	Other Regulation		Special In	structions	e oircle	10		÷.	100					1.1		(will be applied if Rush TAT is not specified).	X
	Res/Park Mediu					ase Cr V	es s				1						Standard TAT = 5-7 Working days for most tests	<u>к-</u> 4
e3 [Agn/Other For R	SC MISA Municipality				Hg /	Ston										Please note: Standard TAT for certain tests such as B days - contact your Project Manager for details.	OD and Dioxins/Furans are > 5
e						d Filtered (please Metals / Hg / Cr	10.00										Job Specific Rush TAT (if applies to entire subm	
		Offiser				d Filt	Sarr						•		×		Date RequiredTin Rush Confirmation Number.	ne Required
_	10/11/2010/01/2010/01/10/01	ia on Certificate of Analysis (Y/N)?				Field	ckap								-			all lab for #)
Samp	e Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix		P.d.		+					-	<u></u>		Contra	orita
		BH 15-3	000 FEDT/18	11:30am	5W		X										19	
									-									
_										1								
									-	-	-							
						-			-									
				_								_			100		-0-	
										-						-		
																	07-Feb-18 1	5:12
								-	-	1	-						Deepthi Shaji	
																	I THE RELEASE DE LEVEL AND A DE LEVEL	11
																	B828879	0
						-	-		-	-					-			0 -
												•	-	1.0			ISP EXTENDE	
	RELINQUISHED BY: (S	Signature/Print) Date: (Y)	//MM/DD) Tir	me	RECEIVED	BY: (Signature/	Print)		Date: (Y)	/MM/DD)	T	ime	# jars i	used and			Laboratory Use Only	A
mr.	Stui 1	Param Sabos 19/0	2/07 3:0	ppn G	Dew	MESUL		2	18 07	107	151	12	not su	bmitted	Time S	ensitive	Temperatule (°C) on Recei Custody Si Present	sal Yes No
									1.0								y/2/1 intact	
S OTHER	WISE AGREED TO IN W	RITING, WORK SUBMITTED ON THIS CHAIR E OF OUR TERMS WHICH ARE AVAILABLE	OF CUSTODY IS SU	BJECT TO MAXXA W.MAXXAM.CA/TE	M'S STANDARD TI RMS.	ERMS AND COM	DITIONS, S	IGNING	OF THIS CH	AIN OF CUS	TODY DOC	UMENTIS					W	hite: Maxxa Yellow: Client
		LINQUISHER TO ENSURE THE ACCURACY				CHAIN OF CUST	ODY MAY R	ESULTI	N ANALYTI	CAL TAT DE	LAYS.			SAMPL	ES MUST	BE KEPT	COOL (< 10° C) FROM TIME OF SAMPLING DELIVERY TO MAXXAM	
E CONT	AINER PRESERVATION	, HOLD TIME AND PACKAGE INFORMATIO	CAN BE VIEWED AT	HTTP-IMAXXAM	CAMP.CONTENT	UPI CADSONT	ARIO.COC P	DE						199				

1.1.1

.

*

Your Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Your C.O.C. #: 699942-54-01

Attention: Robert Ferris

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

> Report Date: 2019/03/12 Report #: R5625336 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B956166 Received: 2019/03/04, 18:58

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sewer Use By-Law Semivolatile Organics	1	2019/03/05	2019/03/06	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2019/03/06	2019/03/11	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2019/03/06	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2019/03/06	2019/03/06	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2019/03/06	2019/03/06	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2019/03/06	2019/03/06	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2019/03/07	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2019/03/04	CAM SOP-00552	MOE LSB E3371
Total Nonylphenol in Liquids by HPLC	1	2019/03/07	2019/03/08	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2019/03/07	2019/03/08	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2019/03/07	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2019/03/07	2019/03/07	CAM SOP-00326	EPA1664B m,SM5520A m
Polychlorinated Biphenyl in Water	1	2019/03/06	2019/03/06	CAM SOP-00309	EPA 8082A m
рН	1	N/A	2019/03/06	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2019/03/06	CAM SOP-00444	OMOE E3179 m
Total Kjeldahl Nitrogen in Water	1	2019/03/06	2019/03/08	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2019/03/07	CAM SOP - 00301	EPA 8270 m
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2019/03/07	2019/03/07	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2019/03/05	2019/03/06	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2019/03/06	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Your C.O.C. #: 699942-54-01

Attention: Robert Ferris

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

> Report Date: 2019/03/12 Report #: R5625336 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B956166

Received: 2019/03/04, 18:58

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tanya Fidlin, Project Manager Email: tfidlin@maxxam.ca Phone# (905)817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID					JCQ330			JCQ330		
Sampling Date					2019/03/04			2019/03/04		
					10:30			10:30		
COC Number					699942-54-01			699942-54-01		
		UNITS	San	Stm	TH-109D	RDL	QC Batch	TH-109D Lab-Dup	RDL	QC Batch
Calculated Parameters										
Total Animal/Vegetable	e Oil and Grease	mg/L	150	-	<0.50	0.50	6000560			
Inorganics					•					
Total BOD		mg/L	300	15	<2	2	6004412			
Fluoride (F-)		mg/L	10 -		0.15	0.10	6004184			
Total Kjeldahl Nitrogen	(TKN)	mg/L	100	-	1.6	0.10	6004526	1.6	0.10	6004526
рН		рН	6.0:11.5	6.0:9.5	7.96		6004180			
Phenols-4AAP		mg/L	1.0	0.008	<0.0010	0.0010	6004239			
Total Suspended Solids		mg/L	350	15	37	10	6002459			
Total Cyanide (CN)		mg/L	2	0.02	<0.0050	0.0050	6005125			
Petroleum Hydrocarbo	ons									
Total Oil & Grease		mg/L	-	-	<0.50	0.50	6006845			
Total Oil & Grease Mine	eral/Synthetic	mg/L	15	-	<0.50	0.50	6006846			
Miscellaneous Parame	ters			•	•	•				
Nonylphenol Ethoxylate	mg/L	0.2	0.01	<0.005	0.005	6006477				
Nonylphenol (Total)		mg/L	0.02	0.001	< 0.001	0.001	6006473			
Metals										
Chromium (VI)		ug/L	2000	40	0.70	0.50	6002476			
Mercury (Hg)		mg/L	0.01	0.0004	<0.0001	0.0001	6004254			
Total Aluminum (Al)		ug/L	50000	-	380	5.0	6004470			
Total Antimony (Sb)		ug/L	5000	-	<0.50	0.50	6004470			
Total Arsenic (As)		ug/L	1000	20	1.4	1.0	6004470			
Total Cadmium (Cd)		ug/L	700	8	<0.10	0.10	6004470			
Total Chromium (Cr)		ug/L	4000	80	<5.0	5.0	6004470			
Total Cobalt (Co)		ug/L	5000	-	<0.50	0.50	6004470			
Total Copper (Cu)		ug/L	2000	40	2.1	1.0	6004470			
Total Lead (Pb)		ug/L	1000	120	1.3	0.50	6004470			
Total Manganese (Mn)		ug/L	5000	50	86	2.0 6004470				
Total Molybdenum (Mo)		ug/L	5000	-	1.7	0.50	6004470			
Total Nickel (Ni)		ug/L	2000	80	4.0	1.0	6004470			
No Fill	No Exceedance									
Grey	Exceeds 1 criter	ia policy/leve	el							
Black	Exceeds both cr									
RDL = Reportable Deteo	ction Limit									
QC Batch = Quality Con										
Lab-Dup = Laboratory I										
								_		

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to Chapter 681

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID					JCQ330			JCQ330		
Sampling Data					2019/03/04			2019/03/04		
Sampling Date					10:30			10:30		
COC Number					699942-54-01			699942-54-01		
		UNITS	San	Stm	TH-109D	RDL	QC Batch	TH-109D Lab-Dup	RDL	QC Batch
Total Phosphorus (P)		ug/L	10000	400	490	100	6004470			
Total Selenium (Se)		ug/L	1000	20	<2.0	2.0	6004470			
Total Silver (Ag)		ug/L	5000	120	<0.10	0.10	6004470			
Total Tin (Sn)		ug/L	5000	-	<1.0	1.0	6004470			
Total Titanium (Ti)		ug/L	5000	-	15	5.0	6004470			
Total Zinc (Zn)		ug/L	2000	40	5.9	5.0	6004470			
Semivolatile Organics										
Di-N-butyl phthalate		ug/L	80	15	<2	2	6002244			
Bis(2-ethylhexyl)phthala	te	ug/L	12	8.8	4	2	6002244			
3,3'-Dichlorobenzidine		ug/L	2	0.8	<0.8	0.8	6002244			
Pentachlorophenol		ug/L	5	2	<1	1	6002244			
Phenanthrene		ug/L	-	-	<0.2	0.2	6002244			
Anthracene		ug/L	-	-	<0.2	0.2	6002244			
Fluoranthene		ug/L	-	-	<0.2	0.2	6002244			
Pyrene		ug/L	-	-	<0.2	0.2	6002244			
Benzo(a)anthracene		ug/L	-	-	<0.2	0.2	6002244			
Chrysene		ug/L	-	-	<0.2	0.2	6002244			
Benzo(b/j)fluoranthene		ug/L	-	-	<0.2	0.2	6002244			
Benzo(k)fluoranthene		ug/L	-	-	<0.2	0.2	6002244			
Benzo(a)pyrene		ug/L	-	-	<0.2	0.2	6002244			
Indeno(1,2,3-cd)pyrene		ug/L	-	-	<0.2	0.2	6002244			
Dibenz(a,h)anthracene		ug/L	-	-	<0.2	0.2	6002244			
Benzo(g,h,i)perylene		ug/L	-	-	<0.2	0.2	6002244			
Dibenzo(a,i)pyrene		ug/L	-	-	<0.2	0.2	6002244			
Benzo(e)pyrene		ug/L	-	-	<0.2	0.2	6002244			
Perylene		ug/L	-	-	<0.2	0.2	6002244			
Dibenzo(a,j) acridine		ug/L	-	-	<0.4	0.4	6002244			
7H-Dibenzo(c,g) Carbazo	le	ug/L	-	-	<0.4	0.4	6002244			
1,6-Dinitropyrene		ug/L	-	-	<0.4	0.4	6002244			
1,3-Dinitropyrene		ug/L	-	-	<0.4	0.4	6002244			
No Fill	No Exceedance		•				•			
Grey	Exceeds 1 criter	ia policy/leve	el							
Black	Exceeds both cr									
RDL = Reportable Detect		,								

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to Chapter 681

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID				JCQ330			JCQ330		
Sampling Date				2019/03/04 10:30			2019/03/04 10:30		
COC Number				699942-54-01			699942-54-01		
	UNITS	San	Stm	TH-109D	RDL	QC Batch	TH-109D Lab-Dup	RDL	QC Batch
1,8-Dinitropyrene	ug/L	-	-	<0.4	0.4	6002244			
Calculated Parameters									
Total PAHs (18 PAHs)	ug/L	5	2	<1	1	6001299			
Volatile Organics				•					
Benzene	ug/L	10	2	<0.50	0.50	6002384			
Chloroform	ug/L	40	2	<0.50	0.50	6002384			
1,2-Dichlorobenzene	ug/L	50	5.6	<1.3	1.3	6002384			
1,4-Dichlorobenzene	ug/L	80	6.8	<1.3	1.3	6002384			
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<1.3	1.3	6002384			
trans-1,3-Dichloropropene	ug/L	140	5.6	<1.0	1.0	6002384			
Ethylbenzene	ug/L	160	2	<0.50	0.50	6002384			
Methylene Chloride(Dichloromethane)	ug/L	2000	5.2	<5.0	5.0	6002384			
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<1.3	1.3	6002384			
Tetrachloroethylene	ug/L	1000	4.4	<0.50	0.50	6002384			
Toluene	ug/L	16	2	<0.50	0.50	6002384			
Trichloroethylene	ug/L	400	7.6	<0.50	0.50	6002384			
p+m-Xylene	ug/L	1400	4.4	<0.50	0.50	6002384			
o-Xylene	ug/L	1400	4.4	<0.50	0.50	6002384			
Total Xylenes	ug/L	1400	4.4	<0.50	0.50	6002384			
PCBs	•		•	•		•			•
Total PCB	ug/L	1	0.4	<0.05	0.05	6004426			
Microbiological						•			
Escherichia coli	CFU/100mL	-	200	<10	10	6001603			
Surrogate Recovery (%)									
2,4,6-Tribromophenol	%	-	-	95		6002244			
2-Fluorobiphenyl	%	-	-	58		6002244			
D14-Terphenyl (FS)	%	-	-	106		6002244			
D5-Nitrobenzene	%	-	-	66		6002244			
D8-Acenaphthylene	%	-	-	71		6002244			
Decachlorobiphenyl	%	-	-	107		6004426			
No Fill No Exceedance									
Grey Exceeds 1 crite	ria policy/leve	I							
Black Exceeds both c	•								
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicate	2								
San,Stm: Toronto Sanitary and Storm Se		w Guideli	nes, resi	pectively. Refere	enced to	Chapter 6	31		

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID					JCQ330			JCQ330		
Sampling Data					2019/03/04			2019/03/04		
Sampling Date					10:30			10:30		
COC Number					699942-54-01			699942-54-01		
		UNITS	San	Stm	TH-109D	RDL	QC Batch	TH-109D Lab-Dup	RDL	QC Batch
4-Bromofluorobenzen	e	%	-	-	92		6002384			
D4-1,2-Dichloroethane	5	%	-	-	102		6002384			
D8-Toluene		%	-	-	94		6002384			
No Fill	No Exceedance									
Grey	Exceeds 1 criter	ia policy/leve	el .							
Black	Exceeds both cr	iteria/levels								
RDL = Reportable Dete	ection Limit									
QC Batch = Quality Co	ty Control Batch									
Lab-Dup = Laboratory	Initiated Duplicate									
San,Stm: Toronto Sani	tary and Storm Sev	werlise By La	w Guideli	nac racr	activaly Rafar	anced to	Chanter 6	01		

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

TEST SUMMARY

Maxxam ID:	JCQ330
Sample ID:	TH-109D
Matrix:	Water

Collected:	2019/03/04
Chinada	

Shipped: Received: 2019/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	6002244	2019/03/05	2019/03/06	Milijana Avramovic
Biochemical Oxygen Demand (BOD)	DO	6004412	2019/03/06	2019/03/11	Althea Gonzalez
Chromium (VI) in Water	IC	6002476	N/A	2019/03/06	Lang Le
Total Cyanide	SKAL/CN	6005125	2019/03/06	2019/03/06	Xuanhong Qiu
Fluoride	ISE	6004184	2019/03/06	2019/03/06	Surinder Rai
Mercury in Water by CVAA	CV/AA	6004254	2019/03/06	2019/03/06	Ron Morrison
Total Metals Analysis by ICPMS	ICP/MS	6004470	N/A	2019/03/07	Arefa Dabhad
E.coli, (CFU/100mL)	PL	6001603	N/A	2019/03/04	Farhana Rahman
Total Nonylphenol in Liquids by HPLC	LC/FLU	6006473	2019/03/07	2019/03/08	Tonghui (Jenny) Chen
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	6006477	2019/03/07	2019/03/08	Tonghui (Jenny) Chen
Animal and Vegetable Oil and Grease	BAL	6000560	N/A	2019/03/07	Automated Statchk
Total Oil and Grease	BAL	6006845	2019/03/07	2019/03/07	Sukhhardey Pal Singh Khangura
Polychlorinated Biphenyl in Water	GC/ECD	6004426	2019/03/06	2019/03/06	Sarah Huang
рН	AT	6004180	N/A	2019/03/06	Surinder Rai
Phenols (4AAP)	TECH/PHEN	6004239	N/A	2019/03/06	Bramdeo Motiram
Total Kjeldahl Nitrogen in Water	SKAL	6004526	2019/03/06	2019/03/08	Rajni Tyagi
Total PAHs	CALC	6001299	N/A	2019/03/07	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	6006846	2019/03/07	2019/03/07	Sukhhardey Pal Singh Khangura
Total Suspended Solids	BAL	6002459	2019/03/05	2019/03/06	Massarat Jan
Volatile Organic Compounds in Water	GC/MS	6002384	N/A	2019/03/06	Manpreet Sarao

Maxxam ID Sample ID Matrix	TH-109D					Shipped:	2019/03/04 2019/03/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Total Kjeldahl Nitrogen	in Water	SKAL	6004526	2019/03/06	2019/03/08	Rajni Tyagi	

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

GENERAL COMMENTS

Each te	emperature is the a	verage of up t	o three cooler temperatures taken at receipt
	Package 1	3.7°C	
Revised	d Report (2019/03/	12): Regulator	/ criteria added as per client request
Sample	e JCQ330 [TH-109D]: VOC Analys	is: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
Result	s relate only to the	items tested.	

Maxxam Job #: B956166 Report Date: 2019/03/12

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6002244	2,4,6-Tribromophenol	2019/03/05	50	10 - 130	63	10 - 130	45	%				
6002244	2-Fluorobiphenyl	2019/03/05	47	30 - 130	74	30 - 130	66	%				
6002244	D14-Terphenyl (FS)	2019/03/05	89	30 - 130	88	30 - 130	92	%				
6002244	D5-Nitrobenzene	2019/03/05	62	30 - 130	82	30 - 130	76	%				
6002244	D8-Acenaphthylene	2019/03/05	49	30 - 130	73	30 - 130	69	%				
6002384	4-Bromofluorobenzene	2019/03/06	102	70 - 130	100	70 - 130	97	%				
6002384	D4-1,2-Dichloroethane	2019/03/06	101	70 - 130	98	70 - 130	103	%				
6002384	D8-Toluene	2019/03/06	103	70 - 130	104	70 - 130	94	%				
6004426	Decachlorobiphenyl	2019/03/06	112	60 - 130	107	60 - 130	115	%				
6002244	1,3-Dinitropyrene	2019/03/05	99	30 - 130	101	30 - 130	<0.4	ug/L				
6002244	1,6-Dinitropyrene	2019/03/05	82	30 - 130	84	30 - 130	<0.4	ug/L				
6002244	1,8-Dinitropyrene	2019/03/05	57	30 - 130	65	30 - 130	<0.4	ug/L				
6002244	3,3'-Dichlorobenzidine	2019/03/05	39	30 - 130	68	30 - 130	<0.8	ug/L				
6002244	7H-Dibenzo(c,g) Carbazole	2019/03/05	76	30 - 130	90	30 - 130	<0.4	ug/L				
6002244	Anthracene	2019/03/05	70	30 - 130	90	30 - 130	<0.2	ug/L				
6002244	Benzo(a)anthracene	2019/03/05	111	30 - 130	113	30 - 130	<0.2	ug/L				
6002244	Benzo(a)pyrene	2019/03/05	88	30 - 130	95	30 - 130	<0.2	ug/L				
6002244	Benzo(b/j)fluoranthene	2019/03/05	94	30 - 130	102	30 - 130	<0.2	ug/L				
6002244	Benzo(e)pyrene	2019/03/05	99	30 - 130	105	30 - 130	<0.2	ug/L				
6002244	Benzo(g,h,i)perylene	2019/03/05	94	30 - 130	105	30 - 130	<0.2	ug/L				
6002244	Benzo(k)fluoranthene	2019/03/05	89	30 - 130	87	30 - 130	<0.2	ug/L				
6002244	Bis(2-ethylhexyl)phthalate	2019/03/05	112	30 - 130	114	30 - 130	<2	ug/L				
6002244	Chrysene	2019/03/05	102	30 - 130	104	30 - 130	<0.2	ug/L				
6002244	Dibenz(a,h)anthracene	2019/03/05	100	30 - 130	109	30 - 130	<0.2	ug/L				
6002244	Dibenzo(a,i)pyrene	2019/03/05	77	30 - 130	101	30 - 130	<0.2	ug/L				
6002244	Dibenzo(a,j) acridine	2019/03/05	99	30 - 130	106	30 - 130	<0.4	ug/L				
6002244	Di-N-butyl phthalate	2019/03/05	94	30 - 130	98	30 - 130	<2	ug/L				
6002244	Fluoranthene	2019/03/05	105	30 - 130	109	30 - 130	<0.2	ug/L				
6002244	Indeno(1,2,3-cd)pyrene	2019/03/05	96	30 - 130	110	30 - 130	<0.2	ug/L				
6002244	Pentachlorophenol	2019/03/05	79	30 - 130	63	30 - 130	<1	ug/L				
6002244	Perylene	2019/03/05	111	30 - 130	113	30 - 130	<0.2	ug/L				
6002244	Phenanthrene	2019/03/05	73	30 - 130	94	30 - 130	<0.2	ug/L				

Maxxam Job #: B956166 Report Date: 2019/03/12

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6002244	Pyrene	2019/03/05	106	30 - 130	110	30 - 130	<0.2	ug/L				
6002384	1,1,2,2-Tetrachloroethane	2019/03/06	99	70 - 130	95	70 - 130	<0.50	ug/L	NC	30		
6002384	1,2-Dichlorobenzene	2019/03/06	96	70 - 130	96	70 - 130	<0.50	ug/L	NC	30		
6002384	1,4-Dichlorobenzene	2019/03/06	99	70 - 130	100	70 - 130	<0.50	ug/L	NC	30		
6002384	Benzene	2019/03/06	93	70 - 130	94	70 - 130	<0.20	ug/L	NC	30		
6002384	Chloroform	2019/03/06	95	70 - 130	96	70 - 130	<0.20	ug/L	0.35	30		
6002384	cis-1,2-Dichloroethylene	2019/03/06	95	70 - 130	96	70 - 130	<0.50	ug/L	NC	30		
6002384	Ethylbenzene	2019/03/06	97	70 - 130	99	70 - 130	<0.20	ug/L	NC	30		
6002384	Methylene Chloride(Dichloromethane)	2019/03/06	90	70 - 130	89	70 - 130	<2.0	ug/L	NC	30		
6002384	o-Xylene	2019/03/06	96	70 - 130	100	70 - 130	<0.20	ug/L	NC	30		
6002384	p+m-Xylene	2019/03/06	100	70 - 130	102	70 - 130	<0.20	ug/L	NC	30		
6002384	Tetrachloroethylene	2019/03/06	95	70 - 130	97	70 - 130	<0.20	ug/L	1.4	30		
6002384	Toluene	2019/03/06	96	70 - 130	97	70 - 130	<0.20	ug/L	NC	30		
6002384	Total Xylenes	2019/03/06					<0.20	ug/L	NC	30		
6002384	trans-1,3-Dichloropropene	2019/03/06	104	70 - 130	93	70 - 130	<0.40	ug/L	NC	30		
6002384	Trichloroethylene	2019/03/06	94	70 - 130	96	70 - 130	<0.20	ug/L	1.3	30		
6002459	Total Suspended Solids	2019/03/06					<10	mg/L	NC	25	98	85 - 115
6002476	Chromium (VI)	2019/03/06	99	80 - 120	100	80 - 120	<0.50	ug/L	NC	20		
6004180	рН	2019/03/06			102	98 - 103			0.48	N/A		
6004184	Fluoride (F-)	2019/03/06	85	80 - 120	101	80 - 120	<0.10	mg/L	1.0	20		
6004239	Phenols-4AAP	2019/03/06	97	80 - 120	98	80 - 120	<0.0010	mg/L	NC	20		
6004254	Mercury (Hg)	2019/03/06	94	75 - 125	94	80 - 120	<0.0001	mg/L	NC	20		
6004412	Total BOD	2019/03/11					<2	mg/L	NC	30	97	80 - 120
6004426	Total PCB	2019/03/06	118	60 - 130	105	60 - 130	<0.05	ug/L	NC	40		
6004470	Total Aluminum (Al)	2019/03/07	104	80 - 120	99	80 - 120	<5.0	ug/L				
6004470	Total Antimony (Sb)	2019/03/07	106	80 - 120	103	80 - 120	<0.50	ug/L				
6004470	Total Arsenic (As)	2019/03/07	100	80 - 120	98	80 - 120	<1.0	ug/L				
6004470	Total Cadmium (Cd)	2019/03/07	101	80 - 120	100	80 - 120	<0.10	ug/L				
6004470	Total Chromium (Cr)	2019/03/07	94	80 - 120	91	80 - 120	<5.0	ug/L				
6004470	Total Cobalt (Co)	2019/03/07	100	80 - 120	99	80 - 120	<0.50	ug/L		1		
6004470	Total Copper (Cu)	2019/03/07	100	80 - 120	97	80 - 120	<1.0	ug/L				
6004470	Total Lead (Pb)	2019/03/07	98	80 - 120	99	80 - 120	<0.50	ug/L				

Maxxam Job #: B956166 Report Date: 2019/03/12

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

			Matrix Spike		SPIKED	BLANK	Method I	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6004470	Total Manganese (Mn)	2019/03/07	96	80 - 120	96	80 - 120	<2.0	ug/L	2.2	20		
6004470	Total Molybdenum (Mo)	2019/03/07	104	80 - 120	97	80 - 120	<0.50	ug/L				
6004470	Total Nickel (Ni)	2019/03/07	93	80 - 120	101	80 - 120	<1.0	ug/L				
6004470	Total Phosphorus (P)	2019/03/07	103	80 - 120	100	80 - 120	<100	ug/L				
6004470	Total Selenium (Se)	2019/03/07	103	80 - 120	98	80 - 120	<2.0	ug/L				
6004470	Total Silver (Ag)	2019/03/07	96	80 - 120	95	80 - 120	<0.10	ug/L				
6004470	Total Tin (Sn)	2019/03/07	105	80 - 120	103	80 - 120	<1.0	ug/L				
6004470	Total Titanium (Ti)	2019/03/07	101	80 - 120	96	80 - 120	<5.0	ug/L				
6004470	Total Zinc (Zn)	2019/03/07	97	80 - 120	97	80 - 120	<5.0	ug/L	3.4	20		
6004526	Total Kjeldahl Nitrogen (TKN)	2019/03/08	93	80 - 120	101	80 - 120	<0.10	mg/L	0	20	100	80 - 120
6005125	Total Cyanide (CN)	2019/03/06	100	80 - 120	106	80 - 120	<0.0050	mg/L	NC	20		
6006473	Nonylphenol (Total)	2019/03/08	106	50 - 130	111	50 - 130	< 0.001	mg/L	NC	40		
6006477	Nonylphenol Ethoxylate (Total)	2019/03/08	79	50 - 130	92	50 - 130	<0.005	mg/L	NC	40		
6006845	Total Oil & Grease	2019/03/07			100	85 - 115	<0.50	mg/L	0.25	25		
6006846	6 Total Oil & Grease Mineral/Synthetic 2019/03/07				94	85 - 115	<0.50	mg/L	1.6	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Farhana Rahman

Farhana Rahman

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

M	(AFC)	44 Camponello Road	ational Corporatio Mississauga, Onte	n o/a Maxxam Ani ario Canada L5N :	alytics 2L8 Tel: (905) 817-	5700 Toll-free 80	00-563-6266 Fa	c (905) 817-57	77 ww	ww.maxxam.ca					CHAI	N OF CUS	TODY RECORD	- 1.1
- 1		VOICE TO					ORT TO:					F	PROJECT	INFORMATION	:	1	Laboratory Use	Page of Only:
Company Name	a #17485 exp Ser Simon Lan	vices Inc		Compan	y Name: Rok	Ret. Fel	u's Oex	D.COM	-	0	uctation i		B4599	8			Maxxam Job #:	Bottle Order #:
Attention: Address:		Alley Dr W Suite 500)	Attention Address	13	2m . 50	aben. 6	exp-(on		O.#:	50	15.1			-		699942
Tel:	(905) 695-3217							-1		P	oject Na	me: MRK	Bor	-00741	474-AD		COC #:	Project Manager:
Email:	simon.lan@exp.c			Tel: Email:			Fax.				le #: Impled B		11 You	kvitee		100	C#699942-54-01	Tanya Fidlin
MOERE	SUBMITTED C	WATER OR WATER	NKING WATE	OR HUMAN C	ONSUMPTION	MUST BE		21	_	ANAL	SIS REC	DUESTED (PL	LEASE BE	E SPECIFIC)			Turnaround Time (TAT) F	l Required:
Table 1	tion 153 (2011) Res/Park Medium Ind/Comm Coarse Agri/Other For RS	VFine CCME Reg 558.	Ither Regulations Sanitary Sewer I Storm Server By Iunicipa®ty	Bylaw law	THE REAL PROPERTY AND	structions	Field Filtered (please circle): Metals / Hg / Cr VI	i San'i bylau								(will be applie Standard TA Please note: days - contac	Please provide advance notice (Standard) TAT: of if Rush TAT is not specified): T = 5-7 Working days for most tests. Standard TAT for certain tests such as i ty our Project Menager for details. ic Rush TAT (if applies to entire such	BOD and Dioxins/Furans are > 5
	Include Criteria						d Filt	out.								Date Require	ed:Ti	ne Required:
Same	ale Barcode Label	sample (Location) Ider					Field	Jo								Rush Confirm	mation Number:	all lab for #)
				Date Sampled	Time Sampled	Matrix		F .	<u> </u>							# of Battles	Comm	ents
1		TH-190		19/03/04	10:30m	GW		\times								19		
2																		
3									-		-							
4				-					-				-					_
5									-		-		_					
6						-			+		+		_					
t									-		_		_					
		_															04-Mar-1	
8																	Tanya Fidlin	
9						/					-	X	-				B956166	
0									1		-		-				KVG ENV-	0
	RELINQUISHED BY: Sig	mature/Print)	Date: (YY/MN	MDD) Tir		DECEMEN	BY: (Signature/		_							*	(
lum	Buille	yon Sabord	19/03/04	1973 - No.	oon 2	RECEIVED	A Signature/			Date: (YY/MM		Time	ra	# jars used an not submitte	1	Labora	tory Use Only	
UNLESS OTHER	WISE AGREED TO IN WRI				P	C CTANDARS	111	10		19/0	104	18-			Time Sensitive	Tempérah	Y (°C) on Recei Custody Se Present Intact	al Yes No
IT IS THE RESPO	ONSIBILITY OF THE RELIN	IQUISHER TO ENSURE THE	ACCURACY OF T	HE CHAIN OF CU	STODY RECORD. A	N INCOMPLETE	CHAIN OF CUST	DDY MAY RES	SULT IN				ENTIS	SAM	PLES MUST BE KEPT UNTIL	COOL (< 10° (DELIVERY TO	C) FROM TIME OF SAMPLING	ite: Maxxa Yellow: Clier

Maxxam Analytics International Corporation o/a Maxxam Analytics

exp Services Inc Client Project #: MRK-00242474-A0 Site Location: 11 YORKVILLE Sampler Initials: PS

Exceedence Summary Table – Toronto San/Stm Sewer

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units
No Exceedences						
The exceedence summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to						
applicable regulatory g	uidelines.					

Project Number: MRK-00242474-A0 Date: Updated July 25, 2019

Appendix E – Construction Flow Rate Calculations

Appendix E: Construction Dewatering Calculations Project: MRK-00242474-A0 11to 21 Yorkville Avenue and 16 to 18 Cumberland Street, Toronto, Ontario

Input Parameter	Units	Items	Notes	
Geological Formation		Sandy Silt/Silty Sand	From borehole logs	
Proposed ground elevation	masl	116.35	Estimated from Drawing A201 by Sweeny & Company Architects, date May 11, 2019 revised July 8, 2019.	
Highest Groundwater Elevation (HGE)	masl	100	The highest representative groundwater elevation measured across the Site (BH15-3 April 12, 2019) plus 1 m to account for seasonal high water table.	
Bottom of Overburden Aquifer	masl	93.9	base of monitoring well TH109D for foundation calculation purposes see Appendix B	
Thickness of Aquifer	m	6.1	calculated	
(H) Water level Height above base of Aquifer	m	6.1	calculated	
Proposed base of excavation for Matt Slab	mbgs	97.0	Estimated from Drawing A101b by Sweeny & Company Architects, date May 11, 2019 revised July 8, 2019.	
Dewatering Elevation Target	masl	96.0	1 m below base of footing excavation	
(h) (dewatered water table above bottom of aquifer	m	2.10	calculated	
(K) Shallow Hydraulic Conductivity (Highest)	m/s	5.9E-06	Appendix C	
(T) Transmissivity	m²/s	1.2E-05	calculated	
Dimension of area (a) below HGE	m	42.1	Estimated from Drawing A101 by Sweeny & Company Architects, date May 11, 2019 revised July 8, 2019.	
Dimension of area (b) below HGE.	m	22.7	Estimated from Drawing A101 by Sweeny & Company Architects, date May 11, 2019 revised July 8, 2019.	
Area of Construction below HGE	m²	956	Estimated from Drawing A101 by Sweeny & Company Architects, date May 11, 2019 revised July 8, 2019.	
Method to Calculate Radius of Influence (R _o)		Sichardt		
(R _o) Radius of Influence	m	29.1	calculated ($R_o = 3000(H-h)VK$)	
(L_o) Distance of Influence from Sides of Excavation $(L_o = R_o/2)$	m	14.6	calculated Zone of Influence	
(Q _w) Dewatering Flow Rate (unconfined linear flow component)	m ² /day 149		calculated (see formula below)	
Factor of Safety		2		
Groundwater Dewatering Flow Rate with Factor of Safety	m³/day	297	calculated	

Note: masl - meters above sea level mbgs -

metres below ground surface

Dupuit - Analytical Solution for Estimating Groundwater Flow from an Unconfined Aquifer to a fully Penetrating Excavation

where:

 Q_w = Rate of Pumping (m³/s)

x = Length of the excavation (m)

K= Hydraulic conductivity (m/s)

H= Head beyond zone of influence of pumping above base of water bearing zone (static groundwater elevation) (m)

 $Q_{w} = xK(H^{2} - h^{2})/L_{o}$

h= Head above base of water bearing zone (m)

L_o = Distance of Influence (m)

Table E-2: Precipitation Estimate

Location	Assumed Precipitation Event (mm)	Total Excavation Area Unencumbered P4 (m ²)	
	15	2352	
Calculated Volume of Precipitation (m ³)		35	

Table E-3: Total Construction Dewatering Flow Rate

Location	Total Construction Dewatering Flow
Excavation (m ³ /day)	333