
11 YORKVILLE PARTNERSHIP INC.

vsp

STORMWATER MANAGEMENT REPORT 11-21 YORKVILLE AVENUE

STORMWATER MANAGEMENT REPORT 11-21 YORKVILLE AVENUE

11 YORKVILLE PARTNERSHIP INC.

REZONING & SITE PLAN APPLICATION

PROJECT NO.: 17M-01494-00 DATE: MARCH 2018

WSP

WWW.WSP.COM

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST DRAFT	FIRST ISSUE	
Remarks	RZA & SPA	RZA & SPA	
Date	03/08/2018	03/08/2018	
Prepared by	Brenden Ding	Brenden Ding	
Signature	13G	16G	
Checked by	Thomas Raso	Bhavika Patel	
Signature	Pr	Brald	
Project number	17M-01494-00	17M-01494-00	

SIGNATURES

PREPARED BY

Brenden Ding, M.A.Sc. Designer, Water Resources

REVIEWED BY

Ball

Bhavika Patel, P.Eng, CFM Project Engineer, Water Resources

This report was prepared by WSP Canada Group Limited for the account of 11 Yorkville Partnership Inc., in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Group Limited's best judgment in light of the information available to it at the time of preparation. Aside from the City of Toronto, who may rely on this report, any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Group Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

PRODUCTION TEAM

CLIENT

11 Yorkville Partnership Inc.

WSP

Designer (EIT)

Brenden Ding

Project Reviewer

Bhavika Patel

wsp

TABLE OF CONTENTS

1	INTRODUCTION1
1.1	Scope1
1.2	Site Location
1.3	Stormwater Management Plan Objectives
1.4	Design Criteria1
2	PRE-DEVELOPMENT CONDITIONS
2.1	General3
2.2	Rainfall Information3
2.3	Allowable Flow Rates
3	POST-DEVELOPMENT CONDITIONS
3.1	General 5
3.2	Water Balance5
3.3	Water Quality Control 6
3.4	Erosion Control7
3.5	Water Quantity Control7
4	CONCLUSIONS9
5	STANDARD LIMITATIONS10

vsp

TABLES

BLE 2.1	RAINFALL PARAMETERS	3
BLE 2.2	PRE-DEVELOPMENT PEAK FLOW RATE	
	CALCULATIONS & MAXIMUM ALLOWABLE	
	SITE DISCHARGE RATE	4
BLE 3.1	PROPOSED LAND-USE AREA	
	BREAKDOWN - BUILDING A	5
BLE 3.2	PROPOSED LAND-USE AREA	
	BREAKDOWN - BUILDING B	5
BLE 3.3	WATER BALANCE CALCULATION - ENTIRE	
	SITE	6
BLE 3.4	WATER BALANCE CALCULATION - ENTIRE	
	SITE	8
ABLE 3.3	PROPOSED LAND-USE AREA BREAKDOWN – BUILDING B WATER BALANCE CALCULATION – ENTIRE SITE WATER BALANCE CALCULATION – ENTIRE	6

FIGURES

FIGURE 1:	SITE LOCATION	1
FIGURE 2:	EXISTING CONDITIONS	3
FIGURE 3:	PROPOSED CONDITIONS	5

APPENDICES

- A STORMWATER MANAGEMENT CALCULATIONS
- **B** HYDROLOGIC MODEL OUTPUT (HYDROCAD)
- C WATER RE-USE DOCUMENTS

1 INTRODUCTION

1.1 SCOPE

WSP has been retained by 11 Yorkville Partnership Inc. to prepare a Stormwater Management Report for the proposed development of 11-21 Yorkville Avenue and 16-18 Cumberland Street in the City of Toronto (herein referred to as Building A and B, respectively, or 'site'). This stormwater management report examines the potential water quality, quantity and water balance impacts of the proposed development and summarizes how each will be addressed in accordance with the City of Toronto's Wet Weather Flow Management Guidelines (WWFMG).

1.2 SITE LOCATION

The site is located on the south side of Yorkville Avenue just west of Yonge Street and on the north side of Cumberland Street. The total site area is 0.32 ha. Building A is 0.28 ha and Building B is 0.04 ha. The location of the proposed development is shown in Figure 1.

1.3 STORMWATER MANAGEMENT PLAN OBJECTIVES

The objectives of the stormwater management plan are as follows:

- Determine site specific stormwater management requirements to ensure that the proposals are in conformance with the City of Toronto WWFMG document;
- Evaluate various stormwater management practices that meet the requirements of the City and recommend a
 preferred strategy; and
- Prepare a stormwater management report documenting the strategy along with the technical information necessary for the justification and sizing of the proposed stormwater management facilities.

1.4 DESIGN CRITERIA

The City of Toronto issued the WWFMG document in November 2006 to provide direction on the management of rainfall and runoff inside the City's jurisdiction. A summary of the stormwater management criteria applicable to this project follows:

- Water Balance The WWFMG requires a site to 'retain stormwater on-site, to the extent practicable, to achieve the same level of annual volume of overland runoff allowable from the development site under pre-development conditions'. According to the guidelines, if the allowable annual runoff volume from the development site under post-development conditions is less than the pre-development conditions, then the maximum allowable annual runoff is 50% of the total average annual rainfall depth. Typically, the minimum on-site runoff retention will require the site to retain all runoff from 5 mm storm event through infiltration, evapotranspiration or rainwater reuse.
- Water Quality Under the WWFMG, the site is required to target a long-term removal of 80% of total suspended solids (TSS) on an annual loading basis. Depending on land use and site activities, sites under 0.3 ha that have a low potential for spills may not require additional quality controls or BMPs.
- Erosion Control –As indicated in WWFMG, 'For small infill/redevelopment sites < 2.0 ha, erosion control in the form
 of stormwater detention is normally not required, provided the on-site minimum runoff retention from a small design
 rainfall event (typically 5 mm) is achieved under the Water Balance Criteria.' During construction, appropriate erosion
 and sediment controls will be implemented.

 Water Quantity Control and Discharge to Municipal Infrastructure – Runoff from the 2-year to 100-year design storms must not exceed the allowable release rate as stated in the WWFMG. The allowable release rate to the municipal storm sewer system from the development site is the 2-year pre-development flow rate based on a runoff coefficient of 0.50 or the capacity of the receiving sewer.

2 PRE-DEVELOPMENT CONDITIONS

2.1 GENERAL

Currently, 11 Yorkville is occupied by a 10-storey commercial building with an underground parking structure at its rear. 17 Yorkville Avenue is occupied by a 3-storey commercial building with a small backyard area. 19-21 Yorkville Avenue is occupied by a 4-storey commercial building. 16 Cumberland Street is occupied by a 3-storey commercial building and 18 Cumberland Street is occupied by a 2-storey commercial building. The total site area is 0.32 ha, the majority of which consists of roof area and hard paved surfaces. Under existing conditions, due to the high ratio of impervious surfaces, a runoff coefficient of 0.90 is estimated, however the WWFMG specify a maximum runoff coefficient of 0.50 be used when calculating runoff in existing conditions for the purposes of determining the allowable release rate. Figure 2 illustrates the existing conditions of the subject site.

2.2 RAINFALL INFORMATION

The rainfall intensity for the site was calculated using the following equation: $I = AT^{C}$

Where;

I = rainfall intensity in mm/hour

T = time of concentration in hours

A and C = constant parameters (see below)

The parameters (A, C) recommended for use by the City of Toronto (per Section 3.1 of the Wet Weather Flow Management Guidelines) are summarized in Table 2.1.

Table 2.1 Rainfall Parameters

RETURN PERIOD						
(years)	2	5	10	25	50	100
А	21.8	32.0	38.7	45.2	53.5	59.7
С	-0.78	-0.79	-0.80	-0.80	-0.80	-0.80

Source: City of Toronto Wet Weather Flow Management Guidelines (November, 2006)

An initial time of concentration, T_c, of 10 minutes (or 0.167 hours) is recommended in the WWFMG document.

2.3 ALLOWABLE FLOW RATES

It is estimated that runoff from the existing building roof and surrounding at-grade at 11-21 Yorkville Avenue are collected by a combined sewer system on Yorkville Street and runoff at 16-18 Cumberland Street are collect by a combined sewer system on Cumberland Street. According to the WWFMG, Section 2.2.3.8, the allowable release rate to the municipal sewer system from the existing site is 35.2 L/s to Yorkville Avenue and 4.4 L/s to Cumberland Street. This is based on the 2-year pre-development flow rate calculated with a runoff coefficient value of 0.50.

The calculated pre-development peak flow rates for the existing site for 2-year to 100-year storm events are summarized in Table 2.2. Detailed calculations are provided in Appendix A.

Table 2.2 Pre-Development Peak Flow Rate Calculations & Maximum Allowable Site Discharge Rate

		EXISTING	EXISTING	WWFMG		EXISTING	WWFMG
		PEAK	PEAK	MAXIMUM	EXISTING PEAK	PEAK	MAXIMUM
		RUNOFF	RUNOFF	ALLOWABLE	RUNOFF	RUNOFF	ALLOWABLE
		RATES, Q	RATES, Q	RELEASE	RATES, Q	RATES, Q	RELEASE
	RAINFALL	(L/s)*	(L/s)**	RATE, QA**	(L/s)***	(L/s)****	RATE, Q _A ****
RETURN	INTENSITY,	YORKVILLE	YORKVILLE	(L/s)	CUMBERLAND	CUMBERLAND	(L/s)
PERIOD	I	AVENUE	AVENUE	YORKVILLE	STREET	STREET	YORKVILLE
(YEARS)	(MM/HR)	C=0.9	C=0.5	AVENUE	C=0.9	C=0.5	AVENUE
2	88.2	63.4	35.2		7.9	4.4	
5	131.8	94.7	52.6		11.8	6.6	
10	162.3	116.6	64.8	35.2	14.5	8.1	4.4
25	189.5	136.2	75.6	55.2	17.0	9.4	
50	224.3	161.2	89.5		20.1	11.2	
100	250.3	179.8	99.9		22.4	12.4	

*C=0.90, pre-development sewer drainage catchment area of 0.29 ha and time of concentration of 10 minutes **C=0.50, pre-development sewer drainage catchment area of 0.29 ha and time of concentration of 10 minutes ***C=0.90, pre-development sewer drainage catchment area of 0.04 ha and time of concentration of 10 minutes ****C=0.50, pre-development sewer drainage catchment area of 0.04 ha and time of concentration of 10 minutes

3 POST-DEVELOPMENT CONDITIONS

3.1 GENERAL

The proposed development consists of one 62-storey mixed use tower (Building A) and one 2-storey retail building (Building B). Building A will have four (4) below-grade parking levels, 716 residential units and approximately 3,107 m² of retail space. Building B will have one below-grade concourse level and two above-ground levels with a total of 954 m² of retail space. All storm service connections for Building A will be provided to existing infrastructure on Yorkville Avenue and for Building B, storm service connections will be directed to the laneway on the north side, which will ultimately connect to the existing combined sewer on Yorkville Avenue. At-grade impervious area north of Building A (213 m²) will flow uncontrolled to Yorkville Avenue. Please refer to Figure 3 for the proposed conditions. Tables 3.1 and 3.2 show the land-use breakdown for Building A and Building B, respectively.

Table 3.1 Proposed Land-Use Area Breakdown - Building A

LAND-USE	AREA (m²)	% COVERAGE	RUNOFF COEFFICIENT, C	
Impervious Roof Surfaces	1,336	46%	0.90	
Green Roof Area	495	17%	0.45	
Landscape Area	50	27%	0.25	
At-Grade Impervious	777	2%	0.90	
Uncontrolled Drainage 213		7%	0.9	
Total Site Area	2,871	100%	0.81	

Table 3.2 Proposed Land-Use Area Breakdown - Building B

LAND-USE	AREA (m²)	% COVERAGE	RUNOFF COEFFICIENT, C
Impervious Roof Surfaces	307	86%	0.90
At-Grade Impervious	50	14%	0.90
Total Site Area	357	100%	0.90

3.2 WATER BALANCE

As noted in section 1.4, the WWFMG states that the proponent should target the retention of 5 mm of stormwater runoff from all surfaces, in order to ensure 50% of the total average annual rainfall volume is retained on site. Due to the underground parking garage occupying the entire site area, infiltration is not feasible for this project. A water reuse sump volume, stored within the stormwater cistern, is the mechanism proposed to achieve water balance requirements. The cistern in Building A will provide all the water balance required for the site.

Given a 5 mm initial abstraction depth over landscape areas and green roof surfaces, (contributing area 546 m²) and a 1 mm abstraction depth over impervious surfaces, (contributing area 2684 m²), a water balance volume of 10.74 m³ will be required to satisfy the water balance criteria. Table 3.3 outlines the water balance requirement for the site. Detailed water balance calculations can be found in Appendix A of this report.

			VOLUME	5 mm	WATER
	AREA	IA	ABSTRACTED	VOLUME	BALANCE
SURFACE TYPE	(m²)	(m)	(m³)	(m³)	(m³)
Impervious Roof Area	1,693	0.001	1.64	8.22	6.77
Green Roof Area	495	0.005	2.48	2.48	-
Landscape Area	50	0.005	0.25	0.25	-
At-Grade Impervious	828	0.001	0.83	4.14	3.31
Uncontrolled Drainage	213	0.001	0.21	1.06	0.85
Total Site Area	3,229	-	5.41	16.15	10.74

Table 3.3 Water Balance Calculation - Entire Site

The re-use methods for the captured stormwater is proposed to be a combination of irrigation supply for the proposed green roof and rooftop misters. The proposed options only operate during May to September and not for the entire year. As such, an annual water balance is done to size the cistern sump and to ensure the re-use options is capable of retaining 50% of the total annual average rainfall volume on site.

The annual total average rainfall within the City of Toronto is 714 mm (Government of Canada, Toronto Rainfall Records from 1981 - 2010). Accounting for initial abstractions, the remaining runoff volume to be retained based on capturing 50% of the total average annual rainfall for the site is 774 m³.

The monthly irrigation demands for the site for the period from May to September have been estimated by Terraplan Landscape Architects. The annual water demand (153 days) for irrigation is 237 m³. Rooftop misters perform mechanicallydriven evapotranspiration, returning water to the atmosphere and counter the heat-island effect of impervious areas. One (1) Koolfog Mojave High-pressure Misting Pump (Model: M88 or approved equivalent) shall be proposed. The pump can mist at a flow rate of 8.3 L/minute (2.2 GMP) or 12 m³ volume within 24 hours or 8 hours a day for three days. The annual water demand (153 days) for misting is 612 m³.

The total annual water demand is 849 m³, which is higher than 50% of the total average annual rainfall less abstractions. It is the developer's responsibility to ensure the selected mechanisms for irrigation and misting meets the water balance criteria. Detailed water demand calculations can be found in Appendix A. Additional water-reuse information can be found in Appendix C.

The cistern sump volume was designed to be large enough to capture runoff from major storm event and thus provide a re-use volume even during extended dry periods. The cistern is designed with a sump storage volume of 40 m³, capable of capturing runoff from a storm event producing up to 14 mm of rainfall depth, which is equivalent to capturing 81% of the total annual rainfall volume (WWFMG, Figure 1a), from May to September.

For the warmer period of May through September, it is important that the sump be sufficiently full to meet the increased water re-use demand which includes irrigation requirements. In the warmer months, the re-use demands are capable of ensuring the cistern has sufficient capacity to capture minor storm events. The average 72 hour water re-use demand is 17 m³, which is larger than the runoff volume associated with a 5 mm storm event, 10.74 m³.

3.3 WATER QUALITY CONTROL

The majority of the site area is new impervious roof or pedestrian walkways, which is consider clean for the purpose of stormwater runoff quality. The TSS loading of this area is relatively low. No additional water quality treatment is recommended at this stage.

3.4 EROSION CONTROL

As mentioned in Section 1.4, this development is an overall small footprint development. According to the WWFMG, 'For small infill/redevelopment sites <2 ha, erosion control in the form of stormwater detention is normally not required, provided the on-site minimum runoff retention from a small design rainfall event (typically 5 mm) is achieved under the Water Balance Criteria.'

The site area for this application is 0.32 ha, which is well below the 2.0 ha guideline, and the 5 mm water balance requirement has been addressed – therefore additional measures for erosion control are not recommended.

3.5 WATER QUANTITY CONTROL

As noted in section 2.3, the allowable discharge rate to the municipal sewer system on Yorkville Avenue from the site is estimated to be 35.2 L/sec, which is equivalent to the peak runoff rate under pre-development conditions during a 2-year design storm event with a minimum runoff coefficient of 0.50.

Discharge from Building A will be directed to a SWM control tank located in the underground parking garage. The cistern is designed to have a footprint of 16.95 m² with a height of 9 m. The cistern volume 171 m³, including sump volume. A pump will be proposed above the sump outlet to drain runoff from the site for the cistern. The pump will discharge to a control manhole before outletting to the Yorkville Avenue municipal sewer. A 125 mm orifice tube will control the flow from the control manhole. Due to insufficient information regarding pump size and associated discharge, a maximum discharge of 16 L/s is assumed for outlet sizing and cistern storage calculations for Buildings A. This ensures that site meets overall stormwater management criteria. It will be developer's responsibility to ensure that the proposed pumps is sized to meet 16 L/s.

Discharge from Building B will be directed to a SWM control tank located at the concourse level. The cistern is designed to have a footprint of 16 m^2 with a height of 2 m. A 3-inch (76 mm) diameter SXH Hydrobrake valve has been selected to control runoff from the cistern.

For events greater than the 100-year storm or in the event of an obstruction at the cistern outlet, excess volume from the cistern will be discharged onto the nearby grade, ultimately discharging to the north of the site on Yorkville Street.

The 'HydroCAD' software package (Version 9.10) has been used to model the behaviour of the proposed SWM system, and determine its response under various storm events. This software utilises the Modified Rational Method to calculate flow rates and related storage values. Detailed output from the model is included in Appendix B. Based on the City's WWFMG criteria – specifically the 'Discharge to Municipal Infrastructure' section – all stormwater runoff from events up to and including the 100-year storm must be contained on site and released at or below the allowable rate. Summaries of the modelled peak offsite discharge rates for the SWM cisterns in Building A and B are provided in Table 3.4 shows the total off site discharge to the municipal sewer, which is in compliance with the WWFMG discharge rate criteria.

Table 3.4 Water Balance Calculation - Entire Site

RETURN PERIOD (YEARS)	UTILIZED CISTERN STORAGE (m^3) $(T_D = 10$ MIN) BUILDING B	PEAK WATER ELEVATION IN CISTERN (M) (T _D = 10 MIN) BUILDING B	CISTERN POST- DEVELOPMENT FLOW RATE (L/s) (T _D = 10 MIN) BUILIDNG B	UNCONTROLLED AT-GRADE FLOW RATE (L/S) (T _D = 10 MIN)	PUMPED FLOW RATE (L/S) (T _D = 10 MIN) BUILDING A	TOTAL SITE ALLOWABLE FLOW RATE (L/s)	OFFSITE POST- DEVELOPMENT FLOW RATE (L/s) (T _D = 10 MIN)
2	2.9	0.357	2.4	4.6			23.0
5	4.9	0.613	2.6	6.9			25.1
10	6.3	0.790	2.9	8.5	16	25.2	26.8
25	7.6	0.950	3.2	9.9	16 35.2		28.4
50	9.2	1.155	3.5	11.7			30.4
100	10.5/ <mark>10.5</mark>	1.309/1.309	3.8/ <mark>3.8</mark>	13.1			31.9/31.9

*Red values in the table are the modelling results at td 10 mins, which is the time of duration that creates the largest peak flow at the Yorkville

Avenue Combined Sewer.

The table above indicates that the flows and storages in the cistern based on 10 minutes duration time from 2 to 100 year; meanwhile it presents the maximum required values at time of peak for 100 year event. The modelling results demonstrate that the post-development peak flow rates for all events up to the 100-year storm are lower than the target release rate established in accordance with the WWFMG. The time of duration has been iteratively determined at $t_d = 10$ minutes (for the 100-year event) according to the Modified Rational Method process.

4 CONCLUSIONS

A stormwater management plan has been prepared to support the rezoning application for the proposed redevelopment of 11-21 Yorkville Avenue and 16-18 Cumberland Street in the City of Toronto. The key points are summarized below.

WATER BALANCE

A sump volume of 40 m^3 is provided at the base of a stormwater cistern in Building A for reuse purposes ensuring that the WWFMG Water Balance criteria are satisfied.

WATER QUANTITY

Storage provided by stormwater cisterns in Building A and B will ensure that the peak offsite discharge rates to the combined sewer on Yorkville Avenue will be below the allowable maximum rate of 35.2 L/s defined in the WWFMG for all storms up to and including the 100-year event. The release rate from each cistern is controlled through the use of a 100 mm orifice tube from the proposed 165 m³ cistern in Building A and the use of a 3 inch (76 mm) SXH HydroBrake valve from the proposed 16 m³ stormwater cistern in Building B.

EROSION CONTROL

The site is below the 2.0 ha erosion control guideline and the on-site minimum retention of the 5 mm rainfall event is achieved under the water balance criteria, therefor no further measures are recommended.

WATER QUALITY

The majority of the site area is new impervious roof or pedestrian walkways, which is consider clean for the purpose of stormwater runoff quality. The TSS loading of this area is relatively low. No additional water quality treatment is recommended at this stage.

The proposed SWM strategy described in this report addresses all stormwater management related impacts from the project and satisfies the intent of the City of Toronto Wet Weather Flow Management Guidelines.

Respectfully submitted,

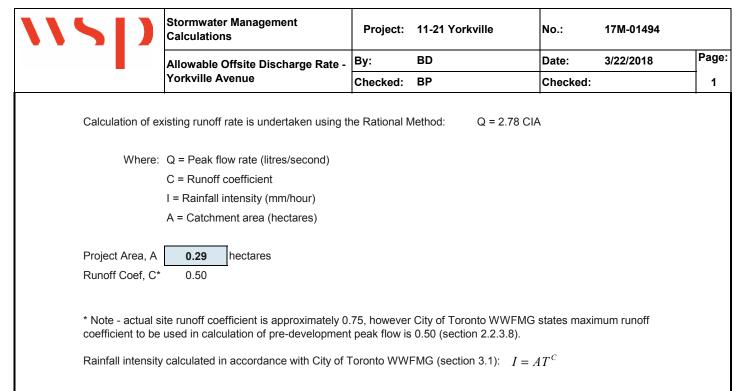
WSP

Brenden Ding, M.A.Sc. Designer, Water Resources

Bhavika Patel, P.Eng.,CFM Project Engineer, Water Resources

5 STANDARD LIMITATIONS

This report was prepared by WSP Group Canada Limited for the client in accordance with the agreement between WSP and the client. This report is based on information provided to WSP which has not been independently verified.


The disclosure of any information contained in this report is the sole responsibility of the client. The material in this report, accompanying spreadsheets and all information relating to this activity reflect WSP's judgment in light of the information available to us at the time of preparation of this report. With the exception of the City of Toronto who can rely on this report, any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this report.

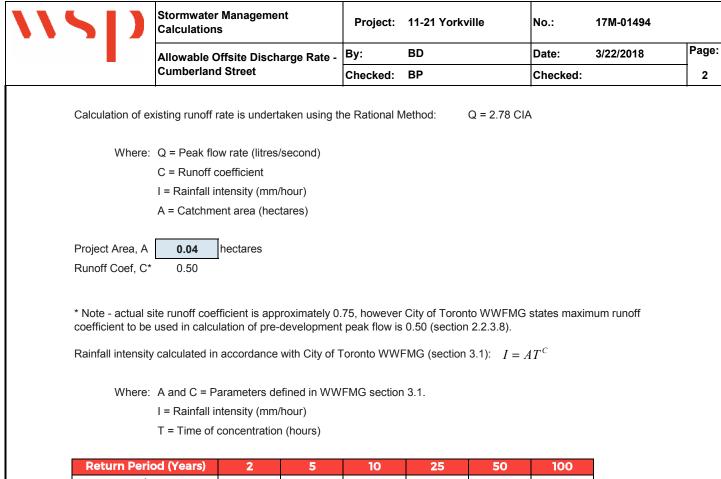
WSP warrants that it performed services hereunder with that degree of care, skill, and diligence normally provided in the performance of such services in respect of projects of similar nature at the time and place those services were rendered. WSP disclaims all other warranties, representations, or conditions, either express or implied, including, without limitation, warranties, representations, or conditions of merchantability or profitability, or fitness for a particular purpose.

This Standard Limitations statement is considered part of this report.

A STORMWATER MANAGEMENT CALCULATIONS

Where: A and C = Parameters defined in WWFMG section 3.1.

I = Rainfall intensity (mm/hour)


T = Time of concentration (hours)

Return Period (Years)	2	5	10	25	50	100
A	21.8	32.0	38.7	45.2	53.5	59.7
С	-0.78	-0.79	-0.80	-0.80	-0.80	-0.80
T (mins) **	10	10	10	10	10	10
T (hrs)	0.167	0.167	0.167	0.167	0.167	0.167
l (mm/hr)	88.2	131.8	162.3	189.5	224.3	250.3
Q (litres/sec)	35.2	52.6	64.8	75.6	89.5	99.9
Q (m3/sec)	0.035	0.053	0.065	0.076	0.090	0.100

** Note recommended minimum value for time of concentration for small sites (<2.0ha) is 10 minutes.

Allowable release rate to municipal storm sewer system is therefore 35.2 litres/second.

(As per City of Toronto WWFMG section 2.2.3.7)

Return Period (Years)	2	5	10	25	50	100
A	21.8	32.0	38.7	45.2	53.5	59.7
С	-0.78	-0.79	-0.80	-0.80	-0.80	-0.80
T (mins) **	10	10	10	10	10	10
T (hrs)	0.167	0.167	0.167	0.167	0.167	0.167
l (mm/hr)	88.2	131.8	162.3	189.5	224.3	250.3
Q (litres/sec)	4.4	6.6	8.1	9.4	11.2	12.4
Q (m3/sec)	0.004	0.007	0.008	0.009	0.011	0.012

** Note recommended minimum value for time of concentration for small sites (<2.0ha) is 10 minutes.

Allowable release rate to municipal storm sewer system is therefore 4.4 litres/second.

(As per City of Toronto WWFMG section 2.2.3.7)

15		Stormwater Management Calculations	Project:	11-21 Yorkville	No.:	17M-01494	
			By:	BD	Date:	3/22/2018	Page:
_		Abstractions and Water Balance	Checked:	BP	Checked:		3

The City of Toronto Wet Weather Flow Management Guidelines (WWFMG) require a site "to retain water on-site to the extent practicable, to achieve the same level of annual volume of overland runoff allowable from the development site under pre-development conditions". - Section 2.2.1.1 (a)

In this case, the minimum on-site runoff retention will require the site to retain all runoff from 5 mm storm event through evapotranspiration infiltration, or rainwater reuse. WWFMG Section 2.2.1.1 (d).

The current area measurements and land use types for the site are as follows:

Land Use	Area (m ²)	Runoff C	Impervious	CN
Impervious Roof Area	1,643	0.90	100%	98
Green Roof Area	495	0.45	0%	81
Landscape	50	0.90	100%	98
At-Grade Impervious	828	0.90	100%	98
Uncontrolled Drainage	213	0.90	100%	98
Total Site Area:	3,229	0.83	85%	95

Surface Type	Area (m ²)	IA (m)	Volume Abstracted (m ³)	5 mm Volume (m ³)	Water Balance (m ³)
Impervious Roof Area	1,643	0.001	1.64	8.22	6.57
Green Roof Area	495	0.005	2.48	2.48	0.00
Landscape	50	0.005	0.25	0.25	0.00
At-Grade Impervious	828	0.001	0.83	4.14	3.31
Uncontrolled Drainage	213	0.001	0.21	1.06	0.85
Total Site Area:	3,229	-	5.41	16.15	10.74

For the purposes of the water balance calculation it is assumed that green roofs can accept 5 mm of rainfall without producing any runoff.

This is supported by EPA analysis of green roof manufacturer data sheets (dry unit weights versus saturated unit weights).

It is assumed that the remaining hard surfaces on the site can abstract 1 mm of rainfall, and that all soft landscaped areas can absorb 5 mm

Therefore, volume of runoff during a 5 mm storm event: 10.74 m^3

115		Stormwater Management Calculations	Project:	11-21 Yorkville	No.:	17M-01494	
		Water Re-Use	By:	BD	Date:	3/22/2018	Page:
_			Checked:	BP	Checked:		4

Method 1 - Irrigation

	May	June	July	August	Sept	Avg
72 Hour Demand (Litres)	4311	5299	5864	4684	3038	4639
Annual Demand - 153 Days (m ³)	220	270	299	239	155	237

Method 2 - Misting

Misting Demand (m ³ /hour)	0.5
Hours of Operation per day	8
72 Hour Misting Demand (m3)	12
Annual Demand -153 days(m ³)	612

Total Annual Demand (m ³)	849
Total 72 Hour Demand (m ³)	17

		Project	11-21 Yorkville					No.	17M-01494	
	י דרי							Date	3/22/2018	Page
								Design	B.D	5
ubject	Analysis of the Total Annual Runoff Vol	lume from Block C	with Proposed SV	VM Strategy						
	Averaged Annual Rainfall Depth: (mm)	714	Source: Toronto Rain	nfall Records (1981 - 20	010)					
			http://www.clim	nate.weatheroffice	.gc.ca/climate_n	ormals/index_e.htn	<u>0</u>			
nnual rainfall v . Green Roofs, . For soft lands	the analysis: Isness Area, the first milimeter rainfall olume in Toronto (WWFMG 2.2.1.1 Fig the water retention layer supporting p caped area, the surfaces retain 48% of Analysis Sheet - Summer Months	g.1a) lants growing can annual average ra	retain 5 mm rain iinfall-runoff volu	fall without discha	irge. That means	Green Roofs can re	tain 48% annua			al average
vater balance	Landuse	Building Green Roof	Soft Landscaped Surfaces	Impervious Surfaces	Site Total	Runoff (Percentage of Annual Total)				
	Area (m ²)	495	50	2,684	3,229					
	% Area Coverage	15.3%	1.5%	83.1%	100.0%					
5 Month F	Rainfall (mm) (May - September)	383	383	383	383	54%				
	nitial Abstraction (mm)	5.0	5.0	1.0	N/A					
Initial Abstra	ction as % Annual Average Rainfall	48%	48%	10%	N/A					
	onth Summer Abstraction / ranspiration/Infiltration (mm)	184	184	38	63	8.8%				
Annual Water	Captured Rainfall Depth (mm)	9.0	9.0	13.0	N/A	N/A				
Re-use	Storage Volume (m ³)	4.5	0.5	34.9	N/A	N/A				
Total	Cistern Storage Required (m ³)	4.5	0.5	34.9	39.8	N/A				
Equivalent % o	ainfall Depth Captured (mm) f total average annual rainfall volume in o (from WWFMG 2.2.1.1 Fig.1a)	14.0 81%	14.0 81%	14.0 81%	N/A 81%	N/A				
	ptured for Summer Months (mm)	310	310	310	310	43.4%				
<u> </u>	ff in Summer Months (mm)	73	73	73	73	10.2%				
								_		
/lonth		Мау	Jun	Jul	Aug	Sep	Total			
ainfall Depth mm)		82	70.9	63.9	81.1	84.7	383			
						Annual %	0.54			
			Summer		I.					
	Average Annual Runoff	38.8%	10.2%	<mark>49.0%</mark>						

		Project	11-21 Yorkville					No.	17M-01494	
								Date	3/22/2018	Page
								Design	B.D	6
Subject	Analysis of the Total Annual Runoff Vo	blume from Block C	with Proposed SW	VM Strategy					•	•
-										
	Averaged Annual Rainfall Depth: (mm) 714		nfall Records (1981 - 20						
			http://www.clim	late.weatheroffice	.gc.ca/climate_r	ormals/index_e.htm				
Water Baland	ce Analysis Sheet - Winter Months (October through	April)							
						- "				
	Landuse	Building Green	Soft Landscaped	Impervious	Site Total	Runoff (Percentage of				
	Landuse	Roof	Surfaces	Surfaces	Site Total	Annual Total)				
	. 2									
	Area (m ²)	495	50	2,684	3,229					
	% Area Coverage	15.3%	1.5%	83.1%	100.0%					
6 Mo	onth Rainfall (Oct - Mar) (mm)	331	331	331	331	46%				
	Initial Abstraction (mm)	5.0	5.0	1.0	N/A					
	raction as % Annual Average Rainfall	48%	48%	10%	N/A					
	Month Winter Abstraction / otranspiration/Infiltration (mm)	159	159	33	54	7.6%				
	Cantured Bainfall Denth (mm)	0.0	0.0	0.0	N/A	N/A				
Annual Wate	Storage Volume (m ³)	0.0	0.0	0.0	N/A	N/A				
Re-use	Cistern Storage Required (m ³)	0.0	0.0	0.0	0.0	N/A				
Total	Rainfall Depth Captured (mm)	5.0	5.0	1.0	N/A					
•	of total average annual rainfall volume in nto (from WWFMG 2.2.1.1 Fig.1a)	48%	48%	10%	16%	N/A				
Depth	Captured for Winter Months (mm)	159	159	33	54	7.6%				
Rui	noff in Winter Months (mm)	172	172	298	277	38.8%				
	Month	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Total	
	Rainfall Depth (mm)	64.3	75.4	38.2	29.1	29.7	33.6	61	331	
								Annual %	0.46	
		Winter	Summer							
	Average Annual Runoff	38.8%	10.2%	49.0%						

1		Project	11-21 Yorkville		No.	17M-01494	17M-01494		
		Ву	B.D.		Date			Page	
		Checked	B.P.		Checked			7	
Subject	Total Annual Water Balance A	nalysis - Ultimate (ondition		<u>.</u>	-			
				fall Records (1981-20		ormals/index_o_bt	-		
			http://www.clim	ate.weatheroffice	e.gc.ca/climate_r	normals/index_e.ht			
	Month Rainfall Depth (mm)	Apr 61.1				Aug 81.1	<u>Sep</u> 84.7]	
			http://www.clim May	ate.weatheroffice	e.gc.ca/climate r	Aug	Sep	Total	

Assumptions of the analysis:

1. For impervious areas, the first milimeter rainfall will wet the pavement and fill sumps; therefore, an initial abstraction depth of 1.0 mm is assumed - this represents 10% of total average annual rainfall volume in Toronto (WWFMG 2.2.1.1 Fig.1a)

2. For green roofs the water retention layer supporting plant growth can retain 5 mm rainfall without discharge, meaning that 48% annual rainfall volume is retained.

3. For soft landscaped areas, the surfaces retain 48% of annual average rainfall-runoff volume by soil retention, vegetation evapotranspiration and infiltration 4. Annual average rainfall percentages for the City of Toronto are taken from WWFMG 2.2.1.1 Fig.1a

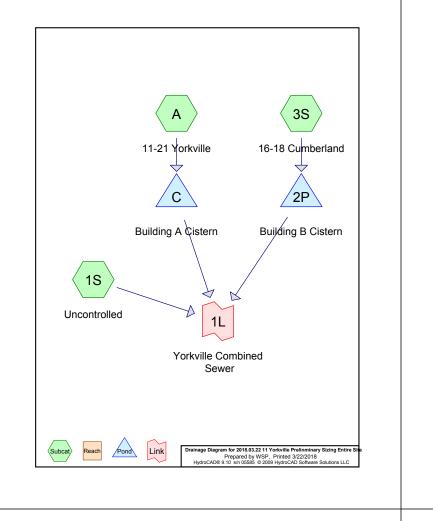
Water Balance Analysis Sheet - Annual

Land Use	Green Roofs	Soft Landscaped Surface	Impervious Surface	Site Total	Runoff (Percentage of Annual Total)
Area (m ²)	495	50	2,684	3,229	
% Area Coverage	15%	2%	83%	100%	
Annual Rainfall (mm)	714	714	714	714	100%
50% to be Retained	357	357	357	357	50%
Initial Abstraction (mm)	5	5	1	N/A	
Initial Abstraction as % Annual Average Rainfall	48%	48%	10%	N/A	
Annual Abstraction/Evapotranspiration/Infiltration (mm)	343	343	71	117	16.4%
Total Retention Required (mm)	14	14	286	240	33.6%
Annual Total Abstraction (mm)	170	17	192	378	
Annual Volume Captured - Less Abstractions (m ³)	7	1	767	774	33.6%

Conclusion

The analysis shows that in order to limit the site's annual runoff to 50% of the total annual rainfall depth, the total annual rainfall volume to be captured on site, less initial abstractions, is 774 m³.

\\\]	Stormwater Management Calculations	Project:	11-21 Yorkville	No.:	17M-01494	
	Orifice Calculation	By:	BD	Date:	3/22/2018	Page:
		Checked:	BP	Checked:		8


Orifice Tube Size, D (mm) Orifice Coefficient, C	125 0.8
Orifice Area, A (m^2)	0.012
Orifice invert elevation, h1	0

Orifice Equation: Q = $CA x \sqrt{2gh}$

Water Elev.	Head on			Tank Min.
in Tank	Outlet*	Q	Q	Active Vol
h2 (m)	h (m)	(m ³ /2)	L/s	(m ³)
0.00	-	-	-	-
0.05	-	-	-	-
0.10	-	-	-	-
0.15	-	-	-	-
0.20	0.14	0.016	16.1	4
0.25	0.19	0.019	18.8	5
0.30	0.24	0.021	21.2	6
0.35	0.29	0.023	23.3	7
0.40	0.34	0.025	25.3	8
0.45	0.39	0.027	27.1	9
0.50	0.44	0.029	28.8	10
0.55	0.49	0.030	30.4	11
0.60	0.54	0.032	31.9	12
0.65	0.59	0.033	33.3	13
0.70	0.64	0.035	34.7	14
0.75	0.69	0.036	36.1	15
0.80	0.74	0.037	37.3	16
0.85	0.79	0.039	38.6	17
0.90	0.84	0.040	39.8	18
0.95	0.89	0.041	41.0	19
1.00	0.94	0.042	42.1	20
1.05	0.99	0.043	43.2	21
1.10	1.04	0.044	44.3	22
1.15	1.09	0.045	45.3	23
1.20	1.14	0.046	46.4	24
1.25	1.19	0.047	47.4	25
1.30	1.24	0.048	48.4	26
1.35	1.29	0.049	49.3	27
1.40	1.34	0.050	50.3	28
1.45	1.39	0.051	51.2	29
1.50	1.44	0.052	52.1	30
1.55	1.49	0.053	53.0	31
1.60	1.54	0.054	53.9	32

B HYDROLOGIC MODEL OUTPUT (HydroCAD)

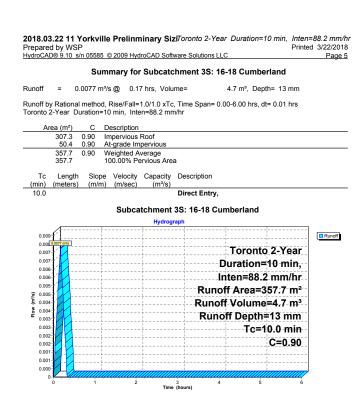
2018.03.22 11 Yorkville Prelinminary Sizing Entire Site Prepared by WSP HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (sq-meters)	С	Description (subcatchment-numbers)
50.0	0.25	Landscape (A)
495.0	0.45	Green Roof (A)
777.5	0.90	At-Grade Impervious (A)
50.4	0.90	At-grade Impervious (3S)
1,643.3	0.90	Impervious Roof (3S, A)
212.9	0.90	Uncontrolled (1S)
3,229.1		TOTAL AREA

		35 © 2009 Hyd				
		Summary	for Subca	atchment 1S: L	Incontrolled	
Runoff	= 0.0046	m³/s @ 0.1	7 hrs, Volu	me= 2	2.8 m ³ , Depth= 13 mm	
Runoff by	Rational metho	od, Rise/Fall=	1.0/1.0 xTc	Time Span= 0.00	0-6.00 hrs, dt= 0.01 hrs	
Toronto 2	Year Duration	.=10 min, Inte	en=88.2 mm	ı/hr		
Are	a (m²) C	Description				
	212.9 0.90 212.9	Uncontroller				
				-		
Tc (min)	Length Slo (meters) (m/		Capacity (m³/s)	Description		
10.0	(112)	(11/000)	(1170)	Direct Entry,		
		0	4 - 1			
		Sub		nt 1S: Uncontr	olled	
	/	1	Hydrogr	aph		7
0.005	0046 mile		+			Runot
0.005			+		Toronto 2-Year	-
0.004	í <mark>/</mark>		+	Di	uration=10 min.	
	Í <mark>k</mark> aranan	-+	+		ten=88.2 mm/hr	-
0.004			+		Area=212.9 m ²	
0.004 0.004 0.003 0.003					AICA-212.3 III	-
0.004 0.003 0.003 (s),10 0.003			+		Volume=2.0 m ³	
0.004 0.003 0.003 (s,u) 0.003 0.003 0.003			+	Runoff	Volume=2.8 m ³	-
400.0 40				Runoff	f Depth≑13 mm	-
400.0 4				Runoff		
400.0 400.00				Runoff	f Depth≑13 mm	
+000 +000 8000 8000 8000 8000 9000 9000				Runoff	f Depth=13 mm Tc=10.0 min	
0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001				Runoff	f Depth=13 mm Tc=10.0 min	

2018.03.22 11 Yorkville Prelinminary SiziToronto 2-Year Duration=10 min, Inten=88.2 mm/hr Prepared by WSP Printed 3/22/2018 HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC Page 3


Time span=0.00-6.00 hrs, dt=0.01 hrs, 601 points Runoff by Rational method, Rise/Fall=1.0/1.0 xTc Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Runoff Area=212.9 m² 0.00% Impervious Runoff Depth=13 mm Tc=10.0 min C=0.90 Runoff=0.0046 m³/s 2.8 m³ Subcatchment1S: Uncontrolled Runoff Area=357.7 m² 0.00% Impervious Runoff Depth=13 mm Subcatchment3S: 16-18 Cumberland Tc=10.0 min C=0.90 Runoff=0.0077 m3/s 4.7 m3 Runoff Area=2,658.5 m² 0.00% Impervious Runoff Depth=12 mm Tc=10.0 min C=0.80 Runoff=0.0512 m³/s 31.2 m³ SubcatchmentA: 11-21 Yorkville Peak Elev=0.357 m Storage=2.9 m³ Inflow=0.0077 m³/s 4.7 m³ Outflow=0.0024 m³/s 4.7 m³ Pond 2P: Building B Cistern Pond C: Building A Cistern Peak Elev=0.798 m Storage=15.2 m3 Inflow=0.0512 m3/s 31.2 m3 Outflow=0.0160 m3/s 31.2 m3 Inflow=0.0230 m³/s 38.8 m³ Primary=0.0230 m³/s 38.8 m³

Link 1L: Yorkville Combined Sewer

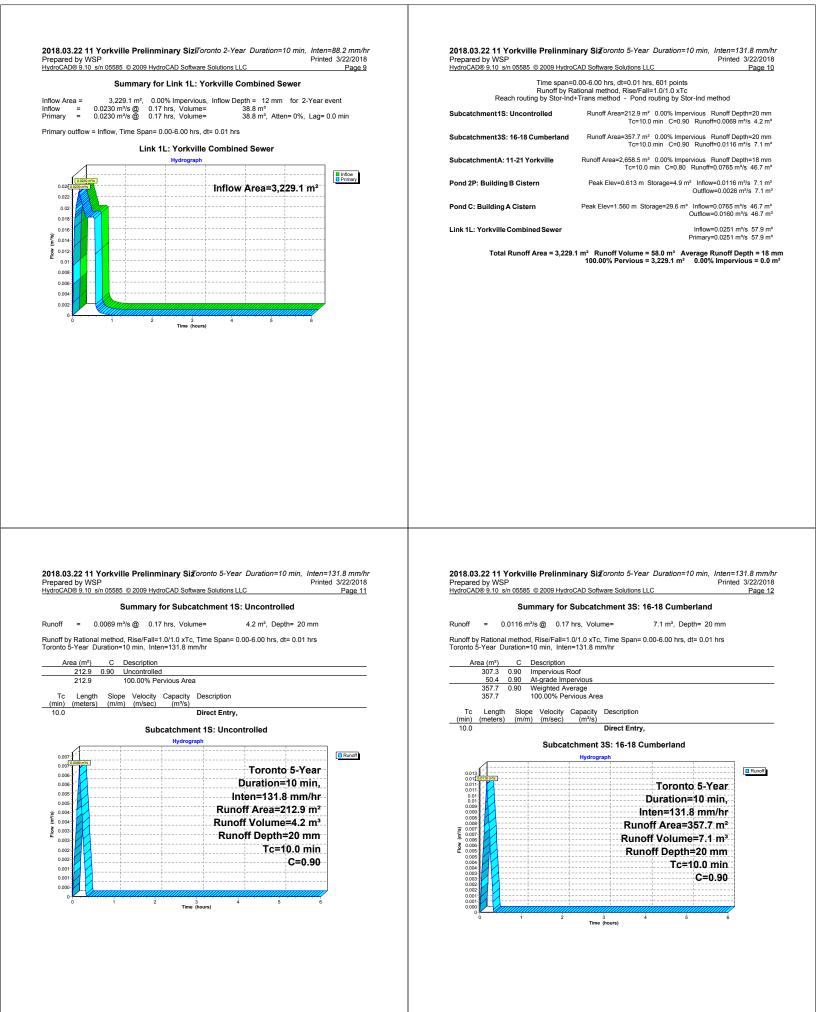
 Total Runoff Area = 3,229.1 m²
 Runoff Volume = 38.8 m³
 Average Runoff Depth = 12 mm

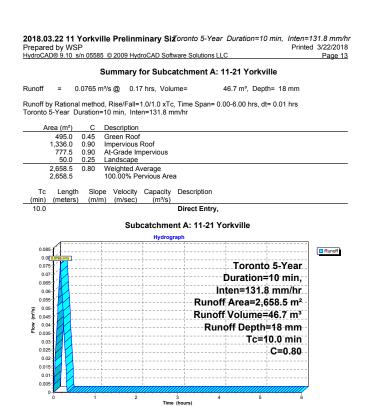
 100.00% Pervious = 3,229.1 m²
 0.00% Impervious = 0.0 m²

Printed 3/22/2018 Page 2

2018.03 Prepare			elinminary SiziToronto	2-Year Duration=10 min	, Inten=88.2 mm/hr Printed 3/22/2018				
HydroCAI	HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC Page 6								
		Summ	ary for Subcatchmen	t A: 11-21 Yorkville					
Runoff	=	0.0512 m³/s @	0.17 hrs, Volume=	31.2 m ³ , Depth= 12	mm				

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Toronto 2-Year Duration=10 min, Inten=88.2 mm/hr

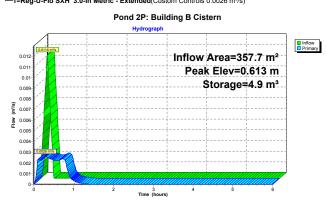

		-						
A	rea (m²)	<u>C</u>	Description					
	495.0 1.336.0	0.45 0.90	Green Roof Impervious					
	777.5	0.90	At-Grade In					
	50.0	0.25	Landscape	ipei vious				
	2.658.5	0.80	Weighted A	verage				
	2,658.5	0.00	100.00% Pe		а			
Tc	Length			Capacity	Description			
(min)	(meters)	(m/m	 (m/sec) 	(m³/s)				
10.0					Direct Entry,			
			Sub	aatahma	nt A: 11-21 Yo	rkuille		
			Sub			orkville		
				Hydrog	raph			
	£			· +				Runoff
0.05	5-1 0.0512 m%s			1				
0.0	5					Toronto	o 2-Year	
0.04				+		Duration=	10 min	
	· · · · ·					I		
0.0	4			ł.		nten=88.2		
0.03	5				Runoff	Area=2,6	558.5 m²	
(s/ _E m) 0.0 mol=				· +	Runoff	Volume=	31 2 m ³	
E 0.0 ≥	°							
율 0.02	5			1	Runo	off Depth	=12 mm	
0.0	2			+		Tc=1	0.0 min	
				· +			C=0.80	
0.01	5						0.00	
0.0	1			1				
0.00				+				
0.00								
	0 7	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>mmm</u>	3 4	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	-		2	Time	(hours)	5	0	


-	00/10/	9.1	5 5/110	0000	@ 2003	Tiyure	00AD 301	tware a	Solutions LLC	;				
					Sum	mary	for Po	nd 2F	: Building	g B Cist	tern			
	v Area				.7 m²,				Inflow Dep		nm	for 2-	Year e	event
o\ tfl	N OW	=		77 m³ 24 m³			hrs, Vol hrs, Vol			4.7 m ³ 4.7 m ³ , <i>1</i>	Atten	= 69%,	Lag=	= 0.0 min
m	ary	=	0.00	24 m³	/s @	0.16	hrs, Vol	ume=		4.7 m³			-	
									, dt= 0.01 h torage= 2.9					
							ulated fo .9 - 10.0		n³ (100% of	inflow)				
-	me		nvert	A			Storage							
#1		0.0	00 m		16	.0 m³	8.00 m	W x 1.	00 mL x 2.0	0 mH Pr	isma	toid		
		Routir	ng		Invert		et Device							
#	1 F	rima	ry	0.0	000 m	Reg-	U-Flo S	XH 3.0	0-in Metric	- Extend	ed			
						ric - E	xtended nd 2P:	(Custo Build	0.178 m (F m Controls ing B Cis	0.0024 m)		
						ric - E	xtended	(Custo Build	m Controls	0.0024 m)		
			o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls	0.0024 m tern	³ /s)	, 		Inflow Primary
	0.009 0.008	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls	0.0024 m tern	³ /s)	, 	n².	Inflow Primary
	-Reg	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controis ing B Cis Inflow	0.0024 m tern	³/s) 35	7.7 n		inflow Primary
	0.009 0.008 0.007 0.007 0.007	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	 Inflow Primary
	0.009 0.008 0.007 0.007	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area=	³∕s)́ :35 =0.	7.7 n 357	m	inflow Primary
1:	0.009 0.008 0.007 0.006 0.006 0.006	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	Inflow Primary
(1) (8/, m)	0.009 0.008 0.007 0.006 0.006 0.006	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	inflow Primary
(1) (8/, m)	0.009 0.008 0.007 0.006 0.006 0.005 0.005 0.004 0.004 0.004 0.004	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	Infow Primary
(1) (8/, m)	0.009 0.008 0.007 0.006 0.006 0.005 0.005 0.004 0.004	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	Primary
(1) (8/, m)	0.009 0.008 0.007 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	Infow Primary
(1) (8/, m)	0.009 0.008 0.007 0.006 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.003 0.003 0.003	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	Primary
-1: (s/cm)	0.009 0.008 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.004 0.003 0.003 0.003 0.003 0.003 0.003	U-FI	o SX⊦			ric - E	xtended nd 2P:	(Custo Build	m Controls ing B Cis Inflow Peal	0.0024 m tern Area= c Elev	³∕s)́ :35 =0.	7.7 n 357	m	Primary

		0000 0 2000 11	ydroCAD Software Solutions LLC P	age 8
		Summa	ary for Pond C: Building A Cistern	
Inflow A			0.00% Impervious, Inflow Depth = 12 mm for 2-Year event 17 hrs, Volume= 31.2 m ³	
Outflow Primary	= 0.016	i0 m³/s @ 0.0	06 hrs, Volume= 31.2 m ³ , Atten= 69%, Lag= 0.0 mi 06 hrs, Volume= 31.2 m ³	n
			ban= 0.00-6.00 hrs, dt= 0.01 hrs / 3 ff.Area= 19.0 m² Storage= 15.2 m³	
		me= 8.0 min ca me= 8.0 min (1	liculated for 31.2 m³ (100% of inflow) 18.0 - 10.0)	
Volume	Invert	Avail.Storad	ge Storage Description	
#1	0.000 m	125.4 n		
Device	Routing	Invert O	utlet Devices	
#1	Primary	E	pecial & User-Defined lev. (meters) 0.000 0.010 2.050 10.000 isch. (m³/s) 0.00000 0.01600 0.01600 0.01600	
			@ 0.06 hrs HW=0.012 m (Free Discharge)	
™_1=Sµ	pecial & User-	Defined (Custo	om Controls 0.0160 m³/s)	
		I	Pond C: Building A Cistern	
	1		Pond C: Building A Cistern Hydrograph	
			Hydrograph	
0.05	55 0.0512 m ¹ /s		Hydrograph	
0.0	15		Hydrograph	
	15		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0	15		Hydrograph Inflow Area=2,658.5 m ²	
0.0 0.04 0.0	15		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0 0.04 0.0	15- 15- 14- 15-		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0 0.04 0.0 9.00	15 15 14 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0 0.04 0.0	15- 15- 14- 15- 15- 15- 15- 15- 15- 15- 15		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0 40.0 50.0 9.0 (Java) 20.0 (Java) 20.0 (Java) 20.0	55		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0 40.0 10.0 10.0 10.0 10.0 10.0 10.0 1	365 155 133 134 135 135 135 135 135 135 135 135 135 135		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0 40.0 20.0 30.0 30.0 10 10 10 10 10 10 10 10 10 10 10 10 10	55 55 55 55 55 55 55 55 55 55		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	
0.0 40.0 10.0 10.0 100 100 100 100 100 100 10	55 55 55 55 55 55 55 55 55 55		Hydrograph Inflow Area=2,658.5 m ² Peak Elev=0.798 m	

3 Time (hours)

2018.03.22 11 Yorkville Prelinminary SiziToronto 2-Year Duration=10 min, Inten=88.2 mm/hr Prepared by WSP Printed 3/22/2018



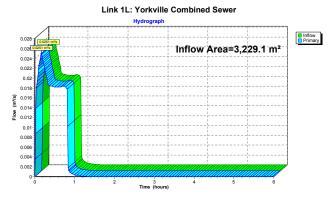
TYUIOCAD	9.10	<u>s/n 05585 © 2009</u> Sum			Building B Cis	tern	Page 14
nflow Are	a =	357.7 m²,	0.00% lı	npervious, Ir	flow Depth = 20	mm for 5-Year	event
nflow	= (0.0116 m³/s @	0.17 hrs,	Volume=	7.1 m³		
Dutflow	= (0.0026 m³/s @	0.30 hrs,	Volume=	7.1 m³,	Atten= 78%, Lag	j= 7.7 min
Primary	= (0.0026 m³/s @	0.30 hrs,	Volume=	7.1 m³		
		nd method, Time 3 m @ 0.30 hrs					
		on time= 19.2 m let. time= 19.3 m			(100% of inflow)		
/olume	Inv	ert Avail.Sto	orage Sto	orage Descrip	tion		
#1	0.000	10	0	0	mL x 2.00 mH P		

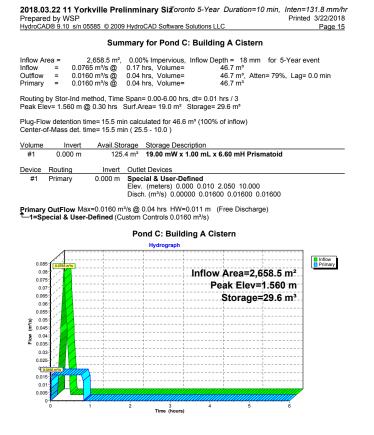
 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 0.000 m
 Reg-U-Flo SXH 3.0-in Metric - Extended

Primary OutFlow Max=0.0026 m³/s @ 0.30 hrs HW=0.613 m (Free Discharge)

 2018.03.22 11 Yorkville Preliminary Siz oronto 5-Year Duration=10 min, Inten=131.8 mm/hr


 Prepared by WSP
 Printed 3/22/2018


 HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC
 Page 16

Summary for Link 1L: Yorkville Combined Sewer

Inflow Are	a =	3,229.1 m²,	0.00% Impervious,	Inflow Depth = 18 mm	for 5-Year event
Inflow	=	0.0251 m³/s @	0.17 hrs, Volume=	57.9 m ³	
Primary	=	0.0251 m³/s @	0.17 hrs, Volume=	57.9 m ³ , Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs

HydroCAD® 9.10 s/n 05585 © 2009 HydroC	AD Software Solutions LLC Page	18 Prepa 17 Hydro
Time span=0	.00-6.00 hrs, dt=0.01 hrs, 601 points	
	tional method, Rise/Fall=1.0/1.0 xTc	
Reach routing by Stor-Ind-	Trans method - Pond routing by Stor-Ind method	Runot
Subcatchment1S: Uncontrolled	Runoff Area=212.9 m ² 0.00% Impervious Runoff Depth=24	m Bunot
	Tc=10.0 min C=0.90 Runoff=0.0085 m ³ /s 5.	n ^a Toron
Subcatchment3S: 16-18 Cumberland	Runoff Area=357.7 m ² 0.00% Impervious Runoff Depth=24	n
	Tc=10.0 min C=0.90 Runoff=0.0143 m ³ /s 8.	n ³
SubcatchmentA: 11-21 Yorkville	Runoff Area=2,658.5 m ² 0.00% Impervious Runoff Depth=22	n
	Tc=10.0 min C=0.80 Runoff=0.0942 m ³ /s 57.	n ^a
Pond 2P: Building B Cistern	Peak Elev=0.790 m Storage=6.3 m ³ Inflow=0.0143 m ³ /s 8.	n³(mi
	Outflow=0.0029 m³/s 8.	n³ 10
Pond C: Building A Cistern	Peak Elev=2.108 m Storage=40.1 m ³ Inflow=0.0942 m ³ /s 57.	1 ³
J J J J J J J J J J J J J J J J J J J	Outflow=0.0160 m³/s 57.	n³
Link 1L: Yorkville Combined Sewer	Inflow=0.0268 m³/s 71.	n ³
	Primary=0.0268 m³/s 71.	n ³
	m ² Bunoff Volume = 71.4 m ³ Average Bunoff Donth =	

 Total Runoff Area = 3,229.1 m²
 Runoff Volume = 71.4 m³
 Average Runoff Depth = 22 mm

 100.00%
 Pervious = 3,229.1 m²
 0.00% Impervious = 0.0 m²

 2018.03.22 11 Yorkville Prelimminary SToronto 10-Year Duration=10 min, Inten=162.3 mm/hr

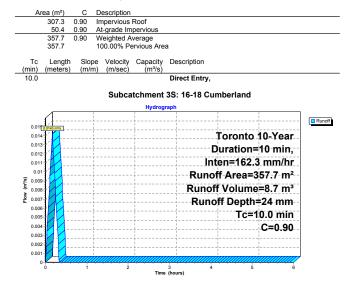
 Prepared by WSP
 Printed 3/22/2018

 HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC
 Page 18

Summary for Subcatchment 1S: Uncontrolled

 Runoff
 =
 0.0085 m³/s @
 0.17 hrs, Volume=
 5.2 m³, Depth= 24 mm

 Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs
 Toronto 10-Year Duration=10 min, Inten=162.3 mm/hr


				102.31				
A	rea (m²)		escription					
	212.9		ncontrolle					
	212.9	10	00.00% Pe	ervious Area	а			
Tc (min)	Length (meters)	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description			
10.0					Direct Entry,			
			Sub	catchme	nt 1S: Uncon	trolled		
				Hydrogi	rapn			
0.00	1			+				Runoff
0.00	8 0.0085 m%s			+		Toronto	10-Year	
0.00				+				
0.00		+		+		ouration=		
0.00	6			·	Int	en=162.3	8 mm/hr	
0.00 0.00				+	Runo	ff Area=2	12.9 m ²	
ີຍ.00	5				Runof	f Volume	=5.2 m ³	
0.00 9.00				+		ff Depth		
0.00	3	ļ		1	runo			
0.00		+		+		I C=1	0.0 min	
0.00				1			C=0.90	
0.00								
0.00								
0.00								
	0	1	2	Time	3 4 (hours)	5	6	

2018.03.22 11 Yorkville Prelinminary ST oronto 10-Year Duration=10 min,	Inten=162.3 mm/hr	
Prepared by WSP	Printed 3/22/2018	
HvdroCAD® 9.10 s/n 05585 © 2009 HvdroCAD Software Solutions LLC	Page 19	

Summary for Subcatchment 3S: 16-18 Cumberland

Runoff = 0.0143 m³/s @ 0.17 hrs, Volume= 8.7 m³, Depth= 24 mm

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Toronto 10-Year Duration=10 min, Inten=162.3 mm/hr

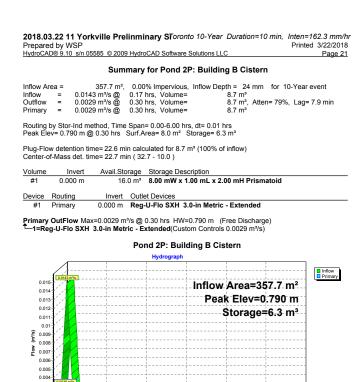
 2018.03.22 11 Yorkville Prelinminary SToronto 10-Year Duration=10 min, Inten=162.3 mm/hr

 Prepared by WSP
 Printed 3/22/2018

 HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC
 Page 20

Summary for Subcatchment A: 11-21 Yorkville

57.5 m3, Depth= 22 mm


Runoff = 0.0942 m³/s @ 0.17 hrs, Volume=

0.02

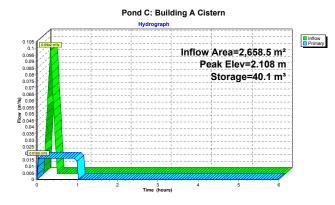
0.0

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Toronto 10-Year Duration=10 min, Inten=162.3 mm/hr

Area (m²)	СD	escription							
495.0	0.45 G	reen Roof							
1.336.0	0.90 In	npervious	Roof						
777.5		t-Grade Im							
50.0	0.25 L	andscape							
2.658.5	0.80 W	Veighted A	verage						
2.658.5			ervious Area	a					
Tc Length	Slope	Velocity	Capacity	Description					
(min) (meters)	(m/m)	(m/sec)	(m³/s)	•					
10.0				Direct Entry,					
Subcatchment A: 11-21 Yorkville									
		Sub	catchme	nt A: 11-21 Yo	orkville				
		Sub	catchme Hydrogi		orkville				
0.105-		Sub			orkville	1			
0.105		Sub			orkville		Runoff		
		Sub				10 Voar	Runoff		
0.1 0.095 0.09		Sub		aph	Toronto	10-Year	Runoff		
0.1 0.095 0.095 0.095 0.095		Sub		aph	Toronto		Runoff		
0.0942 m ¹ /s		Sub		aph	Toronto Duration:	=10 min,	Runoff		
0.1 0.095 0.095 0.095 0.095		Sub		aph	Toronto	=10 min,	Runoff		
0.1 0.095 0.095 0.085 0.085 0.085 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.095 0.00		Sub		aph	Toronto Duration: ten=162.	=10 min, 3 mm/hr	Runoff		
0.0092 m/s 0.095 0.085 0.085 0.085 0.075 0.075		Sub		aph In Runofi	Toronto Duration:	=10 min, 3 mm/hr 658.5 m²	Runoff		

	Sum	mary for Pond C	: Building A Cistern	
Inflow Area =	2,658.5 m²,	0.00% Impervious,	Inflow Depth = 22 mm for 10-Year ever	nt
Inflow =	0.0942 m³/s @			
Outflow =		0.04 hrs, Volume=	57.5 m ³ , Atten= 83%, Lag= 0.0	min
Primary =	0.0160 m³/s @	0.04 hrs, Volume=	57.5 m³	
Routing by Sto	r-Ind method, Time	Span= 0.00-6.00 hrs	, dt= 0.01 hrs / 3	
Peak Elev= 2.1	08 m @ 0.31 hrs	Surf.Area= 19.0 m ²	Storage= 40.1 m ³	

19 02 22 11 Variatilla Prolimminant, Clarate 10 Vacs. Duration=10 min. Inten=162.3


Volume Invert #1 0.000 m Avail.Storage Storage Description 125.4 m³ 19.00 mW x 1.00 mL x 6.60 mH Prismatoid
 Invert
 Outlet Devices

 0.000 m
 Special & User-Defined

 Elev. (meters)
 0.000
 0.010
 2.050
 10.000

 Disch. (m³/s)
 0.00000
 0.01600
 0.01600
 0.01600
 Device Routing #1 Primary

Primary OutFlow Max=0.0160 m³/s @ 0.04 hrs HW=0.018 m (Free Discharge) 1=Special & User-Defined (Custom Controls 0.0160 m³/s)

2018.03.22 11 Yorkville Prelinmin Prepared by WSP	hary ST oronto 25-Year Duration=10 min, Inten=189.5 mm/hr Printed 3/22/2018
HydroCAD® 9.10 s/n 05585 © 2009 HydroC	CAD Software Solutions LLC Page 24
Runoff by Ra	0.00-6.00 hrs, dt=0.01 hrs, 601 points ational method, Rise/Fall=1.0/1.0 xTc +Trans method - Pond routing by Stor-Ind method
Subcatchment1S: Uncontrolled	Runoff Area=212.9 m ² 0.00% Impervious Runoff Depth=28 mm Tc=10.0 min C=0.90 Runoff=0.0099 m³/s 6.0 m ³
Subcatchment3S: 16-18 Cumberland	Runoff Area=357.7 m ² 0.00% Impervious Runoff Depth=28 mm Tc=10.0 min C=0.90 Runoff=0.0167 m ³ /s 10.2 m ³
SubcatchmentA: 11-21 Yorkville	Runoff Area=2,658.5 m ² 0.00% Impervious Runoff Depth=25 mm Tc=10.0 min C=0.80 Runoff=0.1100 m ³ /s 67.2 m ³
Pond 2P: Building B Cistern	Peak Elev=0.950 m Storage=7.6 m³ Inflow=0.0167 m³/s 10.2 m³ Outflow=0.0032 m³/s 10.2 m³
Pond C: Building A Cistern	Peak Elev=2.604 m Storage=49.5 m³ Inflow=0.1100 m³/s 67.2 m³ Outflow=0.0160 m³/s 67.1 m³
Link 1L: Yorkville Combined Sewer	Inflow=0.0284 m³/s 83.3 m³ Primary=0.0284 m³/s 83.3 m³

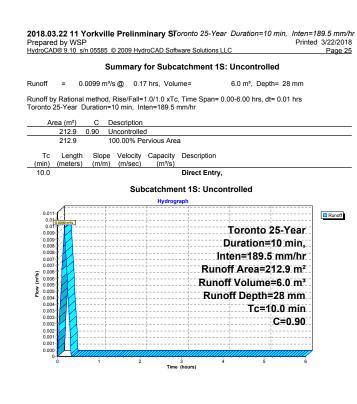
 Total Runoff Area = 3,229.1 m²
 Runoff Volume = 83.4 m³
 Average Runoff Depth = 26 mm

 100.00% Pervious = 3,229.1 m²
 0.00% Impervious = 0.0 m²

2018.03.22 11 Yorkville Prelinminary ST oronto 10-Year Duration=10 min, Inten=162.3 mm/hr Prepared by WSP Printed 3/22/2018 HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC Page 23

3 Time (hours)

Summary for Link 1L: Yorkville Combined Sewer


Inflow Area =		3,229.1 m²,	0.00% Impervious,	Inflow Depth = 22 mm	for 10-Year event
Inflow	=	0.0268 m³/s @	0.17 hrs, Volume=	71.4 m ³	
Primary	=	0.0268 m³/s @	0.17 hrs, Volume=	71.4 m ³ , Atten	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs

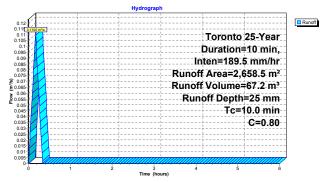
0.003 0.00

0.00

Link 1L: Yorkville Combined Sewer Hydrograph Inflow
Primary 0.02 Inflow Area=3,229.1 m² 0.026 0.024 0.022 0.02 0.018 (s 0.018 0.016 0.014 Flow 0.012 0.01 0.008 0.006 0.004 0.002 3 Time (hours)

2018.03.22 11 Yorkville Prelinminary ST oronto 25-Year Duration=10 min,	Inten=189.5 mm/hr
Prepared by WSP	Printed 3/22/2018
HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC	Page 26
Summary for Subcatchment 3S: 16-18 Cumberland	1

= 0.0167 m³/s @ 0.17 hrs. Volume= 10.2 m³. Depth= 28 mm


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Toronto 25-Year Duration=10 min, Inten=189.5 mm/hr

Runoff

A	rea (m²)	С	Description					
	307.3	0.90	Impervious					
	50.4		At-grade Im					
	357.7	0.90	Weighted A					
	357.7		100.00% Pe	ervious Are	а			
Tc (min)	Length			Capacity (m³/s)	Description			
10.0	(meters)	(11011	<u>i) (iii/3000)</u>	(1173)	Direct Entry,			
			Subca	tchment	3S: 16-18 Cun	nberland		
				Hydrog	raph			,
0.01				1				Runof
	0.0167 m%			+		Toronto	25.Vear	
0.01				+				
0.01				+	E	ouration=	=10 min, -	
0.01				1	Int	en=189.	5 mm/hr	
0.01				+	Runo	ff Area=:	357.7 m ²	
(s, 0.01 0.00 0.00				+		Volume		
≥ 0.00	9			1				
Ê 0.00	8			.i	Runc	ff Depth		
0.00				+		Tc=	10.0-min -	
0.00				· +			C=0.90	
0.00		i		· <u>+</u>			0-0.90	
0.00				+				
0.00				· <u>+</u>				
0.00				+				
						///////////////////////////////////////		,
	Ó	1	2		3 4 (hours)	5	6	

oared by WSP oCAD® 9.10 s/n		9 HydroCAD Software Soluti	ons LLC	Printed 3/22/2018 Page 27	Prepa Hydro
	Summ	nary for Subcatchmen	t A: 11-21 Yorkville		
off by Rational r	method, Rise/	0.17 hrs, Volume= /Fall=1.0/1.0 xTc, Time Spa in, Inten=189.5 mm/hr	67.2 m³, Depth= 2 an= 0.00-6.00 hrs, dt= 0.0		Inflov Inflov Outflo Prima
Area (m²)	C Descri				Routi
	0.45 Green				Peak
		vious Roof			Plug
	0.90 At-Gra 0.25 Landso	ade Impervious			Cent
		ited Average			
2,658.5		0% Pervious Area			Volu #1
Tc Length		ocity Capacity Descripti	on		Dovi
in) (meters)	(m/m) (m/	/sec) (m³/s)			Devi #
	(11/11) (11/2	sec) (m/s)			

Subcatchment A: 11-21 Yorkville

 2018.03.22 11 Yorkville Prelinminary SToronto 25-Year Duration=10 min, Inten=189.5 mm/hr

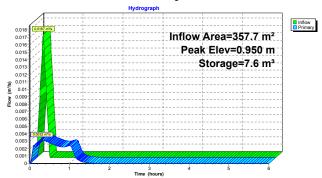
 Prepared by WSP
 Printed 3/22/2018

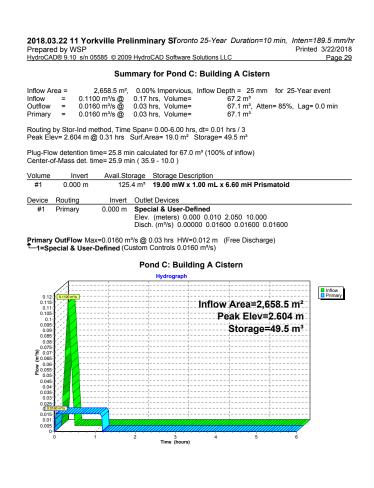
 HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC
 Page 28

Summary for Pond 2P: Building B Cistern

Inflow Are	a =	357.7 m²,	0.00% Impervious,	Inflow Depth = 28 mm for 25-Year event
Inflow	=	0.0167 m³/s @	0.17 hrs, Volume=	10.2 m ³
Outflow	=	0.0032 m³/s @	0.30 hrs, Volume=	10.2 m ³ , Atten= 81%, Lag= 8.1 min
Primary	=	0.0032 m³/s @	0.30 hrs, Volume=	10.2 m³

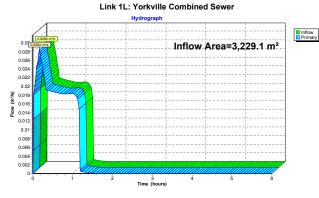
Routing by Stor-Ind method, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Peak Elev= 0.950 m @ 0.30 hrs Surf.Area= 8.0 m² Storage= 7.6 m³


Plug-Flow detention time= 25.3 min calculated for 10.1 m³ (100% of inflow) Center-of-Mass det. time= 25.4 min (35.4 - 10.0)


Volume	Invert	Avail.Storage	Storage Description
#1	0.000 m	16.0 m³	8.00 mW x 1.00 mL x 2.00 mH Prismatoid
Device	Routing	Invert Outle	at Devices

#1 Primary 0.000 m Reg-U-Flo SXH 3.0-in Metric - Extended

Primary OutFlow Max=0.0032 m³/s @ 0.30 hrs HW=0.949 m (Free Discharge) 1=Reg-U-Flo SXH 3.0-in Metric - Extended(Custom Controls 0.0032 m³/s)


Pond 2P: Building B Cistern

Printed 3/22/2018
Page 30

Inflow Area	=	3,229.1 m²,	0.00% Impervious,	Inflow Depth = 26 mm for 25-Year event					
Inflow	=	0.0284 m³/s @	0.17 hrs, Volume=	83.3 m ³					
Primary	=	0.0284 m³/s @	0.17 hrs, Volume=	83.3 m ³ , Atten= 0%, Lag= 0.0 min	i				
Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs									

	U® 9.10) s/n 0558	5 © 2009 H	ydroCAD Soft	ware Solutions LLC	5		Page 3
			Summary	y for Subc	atchment 1S:	Uncontroll	ed	
Runoff		0.0117	-1/- 0 0	47 has 1/shi		70 ml Den		
Runoff	=	0.0117 n	n⁰/s@/∪.	17 hrs, Volu	.me=	7.2 m ³ , Dep	in= 34 mm	
					, Time Span= 0.0	0-6.00 hrs, d	t= 0.01 hrs	
Toronto	50-Yea	ar Duration	n=10 min, I	Inten=224.3 I	mm/hr			
A	rea (m²	²) C	Descriptio	n				
	212.		Uncontroll					
	212.9	9	100.00% F	Pervious Area	а			
Тс	Len	gth Slop	ne Velocity	v Capacity	Description			
(min)	(mete				Description			
10.0					Direct Entry,			
			Su		nt 1S: Uncon	trolled		
	4		1	Hydrog	raph			
0.01			+			 		Runoff
0.01	0.0117 m%s]	+			Toronto	50 Voar	
0.01	1 🛛 🖊		+					
			+			uration=	nu min.	
0.0	1						-	
0.0 0.0 0.00 0.00	11 91 91			+	Int	en=224.3	-	
0.0 0.0 0.00 0.00 0.00 0.00	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		+				8 mm/hr	
0.0 0.00 0.00 0.00 0.00 (\$/, W, 0.00	19988777				Runo	en=224.3 If Area=2	8 mm/hr 12.9 m²	
0.0 0.00 0.00 0.00 0.00 0.00 (s/,ɯ) 0.00 0.00 0.00 0.00	1 9 9 8 8 7 7 6 6				Runol Runof	en=224.3 ff Area=2 f Volume	8 mm/hr 12.9 m² =7.2 m³	
0.0 0.0 00.0 00.0 00.0 00.0 00.0 00.0	1998887766655				Runol Runof	en=224.3 If Area=2 I Volume ff Depth=	8 mm/hr 12.9 m ² =7.2 m ³ =34 mm	
0.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0	19988776665544				Runol Runof	en=224.3 If Area=2 I Volume ff Depth=	8 mm/hr 12.9 m² =7.2 m³	
0.0 0.0 00.0 00.0 00.0 00.0 00.0 00.0	19988877666554433				Runol Runof	en=224.3 If Area=2 I Volume ff Depth=	8 mm/hr 12.9 m ² =7.2 m ³ =34 mm	
0.0 0.0 00.0 00.0 00.0 00.0 00.0 00.0	1999 998 777 66 55 44 43 33 22				Runol Runof	en=224.3 If Area=2 I Volume ff Depth=	8 mm/hr 12.9 m ² =7.2 m ³ =34 mm 0.0 min	

3 Time (hours)

2018.03.22 11 Yorkville Prelinminary ST oronto 50-Year Duration=10 min, Inten=224.3 mm/hr

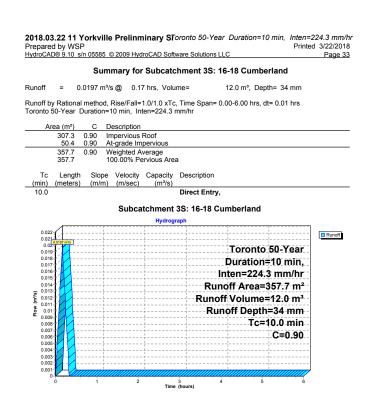
 2018.03.22 11 Yorkville Prelinminary SToronto 50-Year Duration=10 min, Inten=224.3 mm/hri Prepared by WSP
 Printed 3/22/2018

 Printed 3/22/2018
 Printed 3/22/2018

 HydroCAD® 9.10 sin 05585 © 2009 HydroCAD Software Solutions LLC
 Page 31

 Time span=0.00-6.00 hrs, dt=0.01 hrs, 601 points Runoff by Rational method, Rise/Fall=1.0/r1.0 xTc
 Page 31

 Subcatchment1S: Uncontrolled
 Runoff Area=212.9 m² 0.00% Impervious Runoff Depth=34 mm Tc=10.0 min C=0.90 Runoff=0.0117 m³ 7.2 m³


 Subcatchment3S: 16-18 Cumberland
 Runoff Area=357.7 m² 0.00% Impervious Runoff Depth=34 mm Tc=10.0 min C=0.90 Runoff=0.0197 m³/s 12.0 m³

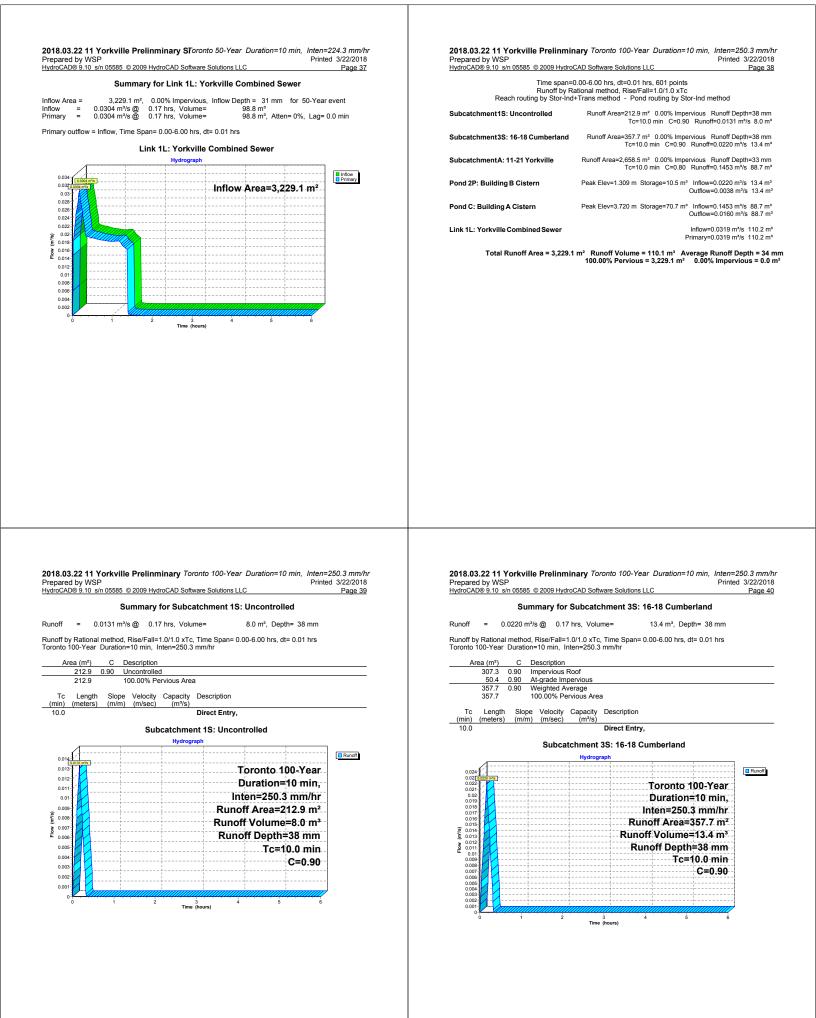
 SubcatchmentA: 11-21 Yorkville
 Runoff Area=2,658.5 m² 0.00% Impervious Runoff Depth=30 mm Tc=10.0 min C=0.80 Runoff=0.1302 m³/s 79.5 m³

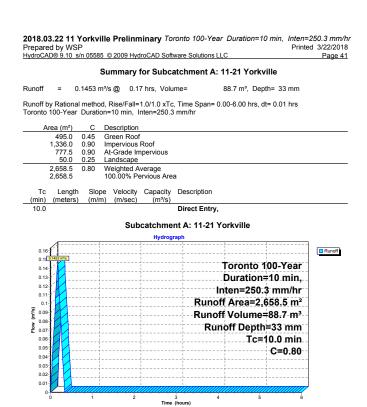
 Pond 2P: Building B Cistern
 Peak Elev=1.155 m Storage=9.2 m³ Inflow=0.0197 m³/s 12.0 m³ Outflow=0.0035 m³/s 12.0 m³

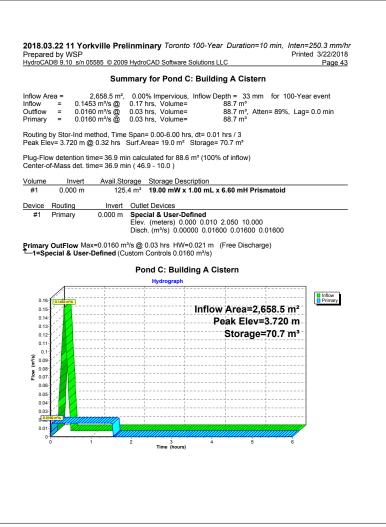
 Pond C: Building A Cistern
 Peak Elev=3.241 m Storage=61.6 m³ Inflow=0.1302 m³/s 79.5 m³ Outflow=0.0030 m³/s 98.8 m³ Pinary=0.0304 m³/s 98.8 m³

Total Runoff Area = 3,229.1 m² Runoff Volume = 98.7 m³ Average Runoff Depth = 31 mm 100.00% Pervious = 3,229.1 m² 0.00% Impervious = 0.0 m²

2018.03 Prepare		Inten=224.3 mm/hr Printed 3/22/2018			
HydroCAI		Page 34			
		Summ	ary for Subcatchmer	nt A: 11-21 Yorkville	
Runoff	=	0.1302 m³/s @	0.17 hrs, Volume=	79.5 m³, Depth= 30	mm


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs Toronto 50-Year Duration=10 min, Inten=224.3 mm/hr


Area (m ²		Description					
495. 1.336.		Green Root Impervious					
777		At-Grade In					
50		Landscape	ipei vious				
2.658.		Weighted A	verage				
2,658.		100.00% P		а			
Tc Len				Description			
(min) (mete	ers) (m/	m) (m/sec)	(m³/s)				
10.0				Direct Entry,			
		Sub	catchme	nt A: 11-21 Y	orkville		
			Hydrog	raph			
4					+		– – "
0.14 0.1302 m ^{1/s}							Runoff
0.13					Toronto	50-Year	
0.12							
0.11					Duration:		
0.1				ir	ten=224.	3 mm/hr	
0.09				Runof	f Area=2,	658 5 m ²	
					+		
je 0.08				Runot	Volume	≠79.5 m³	
8,0.0 (m ₃ /s)				Run	off Depth	=30 mm	
0.06						10.0 min	
0.05					16-		
0.04			1		1	C=0.80	
0.03							
0.02					1		
0.01				·	+	+	
0	1	2		3 4	5	6	
			Time	(hours)			


0.022 0.021 0.02 0.016 0.017 0.017 0.017 0.011 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000						ow Are eak El Stor		55 m	Primary	_	
0.021 0.012 0.016 0.016 0.016 0.016 0.014 0.014 0.012 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012						eak El	ev=1.1	55 m		_	
0.021 0.01 0.018 0.017 0.016 0.016 0.014 0.014 0.014 0.013 0.014 0.011 0.011 0.011 0.011 0.011 0.011 0.011						eak El	ev=1.1	55 m			
0.021 0.01 0.019 0.018 0.017 0.016 0.015 0.015						eak El	ev=1.1	55 m			
0.021 0.012 0.018 0.017 0.016 0.016 0.015	1 00197 m/s 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					eak El	ev=1.1	55 m			
0.021 0.02 0.019 0.018 0.017	1 - 00197 m/s 2					eak El	ev=1.1	55 m		3	
0.021	1 0.0197 m%s										
					. <u>+</u>						
					1				Inflow)	
				2P: Bui Iydrograph	-	Cistern					4
	OutFlow Ma g-U-Flo SXH		³/s @ 0.3	0 hrs HW	/=1.154 n	n (Free D	ischarge)				
Device #1	Routing Primary	0.000 m	Outlet D Reg-U-		3.0-in Me	etric - Exte	ended				<u>[</u>
#1	0.000 m				1.00 mL	x 2.00 mH	Prismato	δια			
Volume	Invert			orage De			Delawart.				<u>\</u>
	w detention ti f-Mass det. ti				2.0 m³ (10	0% of inflo	w)				F
	by Stor-Ind m ev= 1.155 m @										F
Inflow Outflow Primary	= 0.019 = 0.003		0.17 hrs 0.30 hrs	mperviou , Volume , Volume , Volume	=	Depth = 12.0 m 12.0 m 12.0 m	n³, Atten=	or 50-Yea 82%, Lag			l I F
Inflow Ar		Sum	mary to	r Pona	ZP: Bui	Iding B C	Istern				
Inflow Ar		C		" Dand	0D. D						

	100 0.1	U S/N U5	585 © 200	9 Hydro	CAD So	ftware S	Solutions LL	С		Page 36
			Sun	nmary	for P	ond C	: Buildin	g A Cister	n	
Peak È Plug-Fl	= y = y by Sto lev= 3.2 ow dete	0.130; 0.016 0.016 r-Ind me 41 m @ ntion tim	0.31 hrs	0.17 0.03 0.03 e Span Surf.A	hrs, Vo hrs, Vo hrs, Vo = 0.00-6 rea= 19 ulated fo	lume= lume= lume= 0.00 hrs .0 m ²		1.6 m³		
olume		nvert				,	rintion			
#1		00 m	Avail.Ste 125	5.4 m ³				6.60 mH Pris	matoid	
Device	Devil		Inc. and	0.44	et Devic					
#1	Routii Prima		0.000 m		ial & U		fined			
		,	0.000	Elev.	(meter	s) 0.00	0 0.010 2	2.050 10.000		
				Disch	n. (m³/s)	0.000	00 0.0160	0 0.01600 0	.01600	
			=0.0160 m Defined (C					Free Dischar	ge)	
				Po	nd C:	Buildi	ng A Cis	tern		
					Hydro	graph	0			
	1									- Inflow
0.1	4 0.1302 m	Ma						A	CCO C2	- Primary
0.1	3							Area=2,	1	1
0.1	2						Ρε	ak Elev=		
0.1								Storage	=61.6 m³	
								1	1	
0.	13 / K									
0.0	o 1 / 1 /		1					1	1	
0.0	1 / 1	4								- 1
0.0 0.0 (m ³ /s) 0.0 0.0	7									
0.0	7	 								
0.0 0.0 (m ₁ /s) 0.0 Elow	7- 6- 5-									

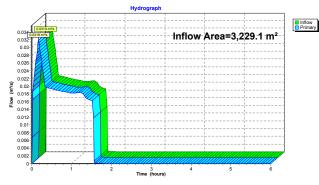
3 Time (hours)

HydroCA	100 0.10 3/110								
		Sum	mary for	Pond 2	P: Buildin	g B Cis	tern		
Inflow A Inflow Outflow Primary	= 0.02 = 0.00	357.7 m², 220 m³/s @ 138 m³/s @ 138 m³/s @	0.17 hrs,	Volume= Volume=		13.4 m³			ar event = 8.3 min
Peak ĔĬ	by Stor-Ind n lev= 1.309 m	@ 0.31 hrs 3	Surf.Area=	8.0 m² S	Storage= 10	.5 m³			
	of-Mass det. t				(····	,			
Volume			rage Sto						
#1	0.000 m	16.	0 m³ 8.0	0 mW x 1.	.00 mL x 2.	00 mH Pr	ismatoi	d	
Device	Routing	Invert	Outlet De	vices					
	y OutFlow Ma eg-U-Flo SXH		ic - Exten Pond 2	ded(Custo P: Build		0.0038 m			
	eg-U-Flo SXH		ic - Exten Pond 2	ded(Custo	om Controls	0.0038 m			Inflow
€_1=Re	eg-U-Flo SXH		ic - Exten Pond 2	ded(Custo P: Build drograph	om Controls	0.0038 m	1 ³ /S)	7 m²	
€_1=Re	eg-U-Flo SXH		ic - Exten Pond 2	ded(Custo P: Build drograph	ing B Cis	0.0038 m	³/s) ∹357.7		
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	24 24 24 22 21 22 22		ic - Exten Pond 2	ded(Custo P: Build drograph	ing B Cis Ing I Cis Inflow Pea	0.0038 m stern Area=	^{⊮s)} -357.7 =1.30	9 m	
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	eg-U-Flo SXH		ic - Exten Pond 2	ded(Custo P: Build drograph	ing B Cis Ing I Cis Inflow Pea	0.0038 m stern Area= k-Elev	^₀ /s) =357.7 =1.30	9 m	
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	eg-U-FIo SXH		ic - Exten Pond 2	ded(Custo P: Build drograph	ing B Cis Ing I Cis Inflow Pea	0.0038 m stern Area= k-Elev	^₀ /s) =357.7 =1.30	9 m	

2018.03.22 11 Yorkville Prelinminary Toronto 100-Year Duration=10 min, Inten=250.3 mm/hr

Printed 3/22/2018

Prepared by WSP


Prepared by WSP	Printed 3/22/2018
HydroCAD® 9.10 s/n 05585 © 2009 HydroCAD Software Solutions LLC	Page 44
Summary for Link 1L: Yorkville Combined Sewer	

Inflow Are	a =	3,229.1 m²,	0.00% Impervious,	Inflow Depth = 34 mm for 100-Year event	
Inflow	=	0.0319 m³/s @	0.17 hrs, Volume=	110.2 m ³	
Primary	=	0.0319 m³/s @	0.17 hrs, Volume=	110.2 m³, Atten= 0%, Lag= 0.0 min	

22 11 Verkulle Prelimminent Terente 100 Veer Duration=10 min Inte

Primary outflow = Inflow, Time Span= 0.00-6.00 hrs, dt= 0.01 hrs

Link 1L: Yorkville Combined Sewer

C WATER RE-USE DOCUMENTS

TERRAPLAN LANDSCAPE ARCHITECTS

PROJECT NUMBER	17-177	PROJECT NAME	11 Yorkville - green ro	oof	TERRAPLAN LAN	DSCAPE ARCHITECTS	
DATE	19-Mar-18	COMPLETED BY	Alex Forbes				
CALCULATIONS FOR WA	TER COLLECTED	vs. WATER NEEDED					
GENERAL INFO		Netric r Efficiency' section of the LE low please note the below	ED Canada-NC 2009 Doci	ument			
Species Factor (Ks)	Species Factor is de	etermined as follows:			- .	rage and High per plant water needs h=.7. Mixed .2, .5, .9. Turfgrass .6, .7, .8	
Density Factor (<i>Kd</i>)	Plant grouping:			Sparsely planted: Densely Planted:		, 0.6 mixed, 0.6 turf, and 0.6 Sedum mats) 1.3 mixed, 1.0 turf, and 1.0 Sedum Plugs)	
Microclimate Factor (<i>Kmc</i>)	Plant grouping exp	oosure to wind, heat, reflect	ed light:	NE / shaded: SW / hot and gets th	e summer wind:	'Low', see above 'Ave or High'	
$Kl = Ks \times Kd \times Kmc$ $Etl = Kl \times 138.2 mm/mth (5.1)$	11 ins/mth) of July	highest FT rate (for Toro	to and region)				

Etl = *Kl* x 138.2 *mm*/ *mth* (5.44 *ins*/ *mth*) of July, highest ET rate (for Toronto and region) *IE* can be Drip, Sprinkler (Spray) or Efficient Flow Nozzles

TPWA (L) = area (m^2) x (Etl / IE)

WATER COLLECTION (if a		rm Water for Irrigation Dur	20202			2 000	m³	X
Cistern:	Smm Retention of Sto	rm Water for Irrigation Pur	poses			3.000	m ²	3000.00
DESIGN CASE								
Landscape	Area	Species Factor	Density Factor	Microclimate	Kl	Etl July	IE	TPWA
							Drip (.9), Low flow (0.75),	Average
Туре	m^2	Ks	Kd	Ктс			Spray (.625)	_
Trees (Canopy Area)	0.0	0.5	1.0	0.5	0.250	34.550	0.625	
Shrubs	0.0	0.4	1.1	1.3	0.572	79.050	0.625	
Perennials	0.0	0.3	1.1	1.3	0.429	59.288	0.625	
Mixed	0.0	0.2	1.3	0.5	0.130	17.966	0.625	
Turfgrass	0.0	0.7	1.0	1.2	0.840	116.088	0.625	
Sedum Mats	495.0	0.5	1.0	1.0	0.500	69.100	0.625	43
Total m ²	495.0				Subtotal (L) per mo	onth		43
* Trees require 55 L					Net potable water	(L) from Design Ca	se per week	10
per week or 220 L/ mth					•		ototal/7days)*3days	4
less rainfall, 6.4 sq m per tree					-			
					5mm Retention fo	r Irrigation Purpose	es (see X above)	

C					
.000					
VA	TPWA	TPWA	TPWA	TPWA	TPWA
e (liters)	May	June	July	August	Sept
-			0		
0	0	0	0	0 0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
43,299	40,234	49,460	54,727	43718	28354
43,299	40,234	49,460	54,727	43,718	28,354
10,825	10,058	12,365	13,682	10,930	7,088
4,639	4,311	5,299	5,864	4,684	3,038
					• • • •
3000	3,000	3,000	3,000	3,000	3,000
0	0	0	0	0	0

APPENDIX D3 – WATER REUSE MISTER DETAILS

Models	M20, M44, M88
Flow Rates	0.5 GPM, 1.1 GPM, 2.2 GPM
Dimensions	Length 35" / 88.9 cm w/ filtration Width 24" / 61 cm Height 15" / 38.1 cm
Weight	109 - 129 lbs 49 - 59 kg
Motor	TEFC .75HP (M20), 2HP (M44 - M88)
Power	110/115 volt standard 50/60Hz
Discharge	1000 psi factory setting 69 bar factory setting
Diagnostics	Inlet and outlet glycerin filled gauges Hour meter showing system usage On/Off/Auto switch
Filtration	Dual filtration, scale inhibiting
Enclosure	Polyethylene enclosure Sound absorption UV protection Superior aesthetics Dual layer protection for electrical control box Integrated oil pan for service

Water Volume: 12,000 L Re-use Limit: 72 hours

2.2 GPM = 500 L/hour 12,000 L X 0.002 hour/L = 24 hours

8.0 hours of misting application between hours of 10AM to 6:00PM during April through October.